Contents
57 found
Order:
1 — 50 / 57
  1. On the role played by the work of Ulisse Dini on implicit function theory in the modern differential geometry foundations: the case of the structure of a differentiable manifold, 1.Giuseppe Iurato - manuscript
    In this first paper we outline what possible historic-epistemological role might have played the work of Ulisse Dini on implicit function theory in formulating the structure of differentiable manifold, via the basic work of Hassler Whitney. A detailed historiographical recognition about this Dini's work has been done. Further methodological considerations are then made as regards history of mathematics.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  2. Bishop's Mathematics: a Philosophical Perspective.Laura Crosilla - forthcoming - In Handbook of Bishop's Mathematics. CUP.
    Errett Bishop's work in constructive mathematics is overwhelmingly regarded as a turning point for mathematics based on intuitionistic logic. It brought new life to this form of mathematics and prompted the development of new areas of research that witness today's depth and breadth of constructive mathematics. Surprisingly, notwithstanding the extensive mathematical progress since the publication in 1967 of Errett Bishop's Foundations of Constructive Analysis, there has been no corresponding advances in the philosophy of constructive mathematics Bishop style. The aim of (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  3. Explaining Experience In Nature: The Foundations Of Logic And Apprehension.Steven Ericsson-Zenith - forthcoming - Institute for Advanced Science & Engineering.
    At its core this book is concerned with logic and computation with respect to the mathematical characterization of sentient biophysical structure and its behavior. -/- Three related theories are presented: The first of these provides an explanation of how sentient individuals come to be in the world. The second describes how these individuals operate. And the third proposes a method for reasoning about the behavior of individuals in groups. -/- These theories are based upon a new explanation of experience in (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  4. From a Doodle to a Theorem: A Case Study in Mathematical Discovery.Juan Fernández González & Dirk Schlimm - 2023 - Journal of Humanistic Mathematics 13 (1):4-35.
    We present some aspects of the genesis of a geometric construction, which can be carried out with compass and straightedge, from the original idea to the published version (Fernández González 2016). The Midpoint Path Construction makes it possible to multiply the length of a line segment by a rational number between 0 and 1 by constructing only midpoints and a straight line. In the form of an interview, we explore the context and narrative behind the discovery, with first-hand insights by (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  5. On the epistemic contribution of financial models.Alexander Mebius - 2023 - Journal of Economic Methodology 30 (1):49-62.
    Financial modelling is an essential tool for studying the possibility of financial transactions. This paper argues that financial models are conventional tools widely used in formulating and establishing possibility claims about a prospective investment transaction, from a set of governing possibility assumptions. What is distinctive about financial models is that they articulate how a transaction possibly could occur in a non-actual investment scenario given a limited base of possibility conditions assumed in the model. For this reason, it is argued that (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  6. Deductivism in the Philosophy of Mathematics.Alexander Paseau & Fabian Pregel - 2023 - Stanford Encyclopedia of Philosophy 2023.
  7. Fishbones, Wheels, Eyes, and Butterflies: Heuristic Structural Reasoning in the Search for Solutions to the Navier-Stokes Equations.Lydia Patton - 2023 - In Lydia Patton & Erik Curiel (eds.), Working Toward Solutions in Fluid Dynamics and Astrophysics. Springer. pp. 57-78.
    Arguments for the effectiveness, and even the indispensability, of mathematics in scientific explanation rely on the claim that mathematics is an effective or even a necessary component in successful scientific predictions and explanations. Well-known accounts of successful mathematical explanation in physical science appeals to scientists’ ability to solve equations directly in key domains. But there are spectacular physical theories, including general relativity and fluid dynamics, in which the equations of the theory cannot be solved directly in target domains, and yet (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  8. Nothing Infinite: A Summary of Forever Finite.Kip Sewell - 2023 - Rond Media Library.
    In 'Forever Finite: The Case Against Infinity' (Rond Books, 2023), the author argues that, despite its cultural popularity, infinity is not a logical concept and consequently cannot be a property of anything that exists in the real world. This article summarizes the main points in 'Forever Finite', including its overview of what debunking infinity entails for conceptual thought in philosophy, mathematics, science, cosmology, and theology.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9. Predicativity and constructive mathematics.Laura Crosilla - 2022 - In Gianluigi Oliveri, Claudio Ternullo & Stefano Boscolo (eds.), Objects, Structures and Logics. Springer Cham.
    In this article I present a disagreement between classical and constructive approaches to predicativity regarding the predicative status of so-called generalised inductive definitions. I begin by offering some motivation for an enquiry in the predicative foundations of constructive mathematics, by looking at contemporary work at the intersection between mathematics and computer science. I then review the background notions and spell out the above-mentioned disagreement between classical and constructive approaches to predicativity. Finally, I look at possible ways of defending the constructive (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  10. Unrealistic Models in Mathematics.William D'Alessandro - 2022 - Philosophers’ Imprint.
    Models are indispensable tools of scientific inquiry, and one of their main uses is to improve our understanding of the phenomena they represent. How do models accomplish this? And what does this tell us about the nature of understanding? While much recent work has aimed at answering these questions, philosophers' focus has been squarely on models in empirical science. I aim to show that pure mathematics also deserves a seat at the table. I begin by presenting two cases: Cramér’s random (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  11. Neues System der philosophischen Wissenschaften im Grundriss. Band II: Mathematik und Naturwissenschaft.Dirk Hartmann - 2021 - Paderborn: Mentis.
    Volume II deals with philosophy of mathematics and general philosophy of science. In discussing theoretical entities, the notion of antirealism formulated in Volume I is further elaborated: Contrary to what is usually attributed to antirealism or idealism, the author does not claim that theoretical entities do not really exist, but rather that their existence is not independent of the possibility to know about them.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12. Permanence as a Principle of Practice.Iulian D. Toader - 2021 - Historia Mathematica 54:77-94.
    The paper discusses Peano's defense and application of permanence as a principle of practice, and Hahn's further point that, even if it were a principle of logic, permanence would not eliminate all logical ambiguity. Dedicated to the memory of Mic Detlefsen.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  13. Why Did Weyl Think That Emmy Noether Made Algebra the Eldorado of Axiomatics?Iulian D. Toader - 2021 - Hopos: The Journal of the International Society for the History of Philosophy of Science 11 (1):122-142.
    This paper argues that Noether's axiomatic method in algebra cannot be assimilated to Weyl's late view on axiomatics, for his acquiescence to a phenomenological epistemology of correctness led Weyl to resist Noether's principle of detachment.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14. Skolem’s “paradox” as logic of ground: The mutual foundation of both proper and improper interpretations.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (19):1-16.
    A principle, according to which any scientific theory can be mathematized, is investigated. That theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather a metamathematical axiom about the relation of mathematics and reality. Its investigation needs philosophical (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  15. Can the Pyrrhonian Sceptic Suspend Belief Regarding Scientific Definitions?Benjamin Wilck - 2020 - History of Philosophy & Logical Analysis 23 (1):253-288.
    In this article, I tackle a heretofore unnoticed difficulty with the application of Pyrrhonian scepticism to science. Sceptics can suspend belief regarding a dogmatic proposition only by setting up opposing arguments for and against that proposition. Since Sextus provides arguments exclusively against particular geometrical definitions in Adversus Mathematicos III, commentators have argued that Sextus’ method is not scepticism, but negative dogmatism. However, commentators have overlooked the fact that arguments in favour of particular geometrical definitions were absent in ancient geometry, and (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  16. Explanation in mathematics: Proofs and practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11):e12629.
    Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if so, how do (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  17. Hermeneutics of Ceteris Paribus in the African Context.Emerson Abraham Jackson - 2019 - Economic Insights -Trends and Challenges 9 (71):9-16.
    This article has provided a philosophical discourse approach in deconstructing Ceteris Paribus (CP) as applied in contemporary Africa. The concept of CP, which affirm the notion of ‘all things are equal’ does not always hold true in the real world. The author has gone beyond the normal interpretation of the word shock, which is making it impossible for the CP concept to hold true in reality. The paper has unraveled critical discourses spanning corruption element as a key factor in the (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  18. Applying Mathematics: Immersion, Inference, Interpretation.Otávio Bueno & Steven French - 2018 - Oxford, England: Oxford University Press. Edited by Steven French.
    How is that when scientists need some piece of mathematics through which to frame their theory, it is there to hand? What has been called 'the unreasonable effectiveness of mathematics' sets a challenge for philosophers. Some have responded to that challenge by arguing that mathematics is essentially anthropocentric in character, whereas others have pointed to the range of structures that mathematics offers. Otavio Bueno and Steven French offer a middle way, which focuses on the moves that have to be made (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  19. Rejection in Łukasiewicz's and Słupecki's Sense.Urszula Wybraniec-Skardowska - 2018 - In Urszula Wybraniec-Skardowska & Ángel Garrido (eds.), The Lvov-Warsaw School. Past and Present. Basel, Switzerland: Springer- Birkhauser,. pp. 575-597.
    The idea of rejection originated by Aristotle. The notion of rejection was introduced into formal logic by Łukasiewicz [20]. He applied it to complete syntactic characterization of deductive systems using an axiomatic method of rejection of propositions [22, 23]. The paper gives not only genesis, but also development and generalization of the notion of rejection. It also emphasizes the methodological approach to biaspectual axiomatic method of characterization of deductive systems as acceptance (asserted) systems and rejection (refutation) systems, introduced by Łukasiewicz (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  20. In Defense of Mathematical Inferentialism.Seungbae Park - 2017 - Analysis and Metaphysics 16:70-83.
    I defend a new position in philosophy of mathematics that I call mathematical inferentialism. It holds that a mathematical sentence can perform the function of facilitating deductive inferences from some concrete sentences to other concrete sentences, that a mathematical sentence is true if and only if all of its concrete consequences are true, that the abstract world does not exist, and that we acquire mathematical knowledge by confirming concrete sentences. Mathematical inferentialism has several advantages over mathematical realism and fictionalism.
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  21. Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems.Yaroslav Sergeyev - 2017 - EMS Surveys in Mathematical Sciences 4 (2):219–320.
    In this survey, a recent computational methodology paying a special attention to the separation of mathematical objects from numeral systems involved in their representation is described. It has been introduced with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework in all the situations requiring these notions. The methodology does not contradict Cantor’s and non-standard analysis views and is based on the Euclid’s Common Notion no. 5 “The whole is greater than the (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  22. Knowledge of Abstract Objects in Physics and Mathematics.Michael J. Shaffer - 2017 - Acta Analytica 32 (4):397-409.
    In this paper a parallel is drawn between the problem of epistemic access to abstract objects in mathematics and the problem of epistemic access to idealized systems in the physical sciences. On this basis it is argued that some recent and more traditional approaches to solving these problems are problematic.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  23. Envisioning Transformations – The Practice of Topology.Silvia De Toffoli & Valeria Giardino - 2016 - In Brendan Larvor (ed.), Mathematical Cultures: The London Meetings 2012--2014. Zurich, Switzerland: Birkhäuser. pp. 25-50.
    The objective of this article is twofold. First, a methodological issue is addressed. It is pointed out that even if philosophers of mathematics have been recently more and more concerned with the practice of mathematics, there is still a need for a sharp definition of what the targets of a philosophy of mathematical practice should be. Three possible objects of inquiry are put forward: (1) the collective dimension of the practice of mathematics; (2) the cognitives capacities requested to the practitioners; (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   11 citations  
  24. Introduction to Abstractionism.Philip A. Ebert & Marcus Rossberg - 2016 - In Philip A. Ebert & Marcus Rossberg (eds.), Abstractionism. Oxford: Oxford University Press. pp. 3-33.
  25. On the Depth of Szemeredi's Theorem.Andrew Arana - 2015 - Philosophia Mathematica 23 (2):163-176.
    Many mathematicians have cited depth as an important value in their research. However, there is no single widely accepted account of mathematical depth. This article is an attempt to bridge this gap. The strategy is to begin with a discussion of Szemerédi's theorem, which says that each subset of the natural numbers that is sufficiently dense contains an arithmetical progression of arbitrary length. This theorem has been judged deep by many mathematicians, and so makes for a good case on which (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  26. Anotações acerca de Symbolic Knowledge from Leibniz to Husserl. [REVIEW]Gisele Dalva Secco - 2015 - Revista Latinoamericana de Filosofia (2):239-251.
    This note presents an analysis of Symbolic Knowledge from Leibniz to Husserl, a collection of works from some members of The Southern Cone Group for the Philosophy of Formal Sciences. The volume delineates an outlook of the philosophical treatments presented by Leibniz, Kant, Frege, and the Booleans, as well as by Husserl, of some questions related to the conceptual singularities of symbolic knowledge –whose standard we find in the arts of algebra and arithmetic. The book’s unity of themes and (at (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27. Lakatos’ Quasi-empiricism in the Philosophy of Mathematics.Michael J. Shaffer - 2015 - Polish Journal of Philosophy 9 (2):71-80.
    Imre Lakatos' views on the philosophy of mathematics are important and they have often been underappreciated. The most obvious lacuna in this respect is the lack of detailed discussion and analysis of his 1976a paper and its implications for the methodology of mathematics, particularly its implications with respect to argumentation and the matter of how truths are established in mathematics. The most important themes that run through his work on the philosophy of mathematics and which culminate in the 1976a paper (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  28. Mathematical symbols as epistemic actions.Johan De Smedt & Helen De Cruz - 2013 - Synthese 190 (1):3-19.
    Recent experimental evidence from developmental psychology and cognitive neuroscience indicates that humans are equipped with unlearned elementary mathematical skills. However, formal mathematics has properties that cannot be reduced to these elementary cognitive capacities. The question then arises how human beings cognitively deal with more advanced mathematical ideas. This paper draws on the extended mind thesis to suggest that mathematical symbols enable us to delegate some mathematical operations to the external environment. In this view, mathematical symbols are not only used to (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  29. Experimental mathematics, computers and the a priori.Mark McEvoy - 2013 - Synthese 190 (3):397-412.
    In recent decades, experimental mathematics has emerged as a new branch of mathematics. This new branch is defined less by its subject matter, and more by its use of computer assisted reasoning. Experimental mathematics uses a variety of computer assisted approaches to verify or prove mathematical hypotheses. For example, there is “number crunching” such as searching for very large Mersenne primes, and showing that the Goldbach conjecture holds for all even numbers less than 2 × 1018. There are “verifications” of (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  30. Solving ordinary differential equations by working with infinitesimals numerically on the Infinity Computer.Yaroslav Sergeyev - 2013 - Applied Mathematics and Computation 219 (22):10668–10681.
    There exists a huge number of numerical methods that iteratively construct approximations to the solution y(x) of an ordinary differential equation (ODE) y′(x) = f(x,y) starting from an initial value y_0=y(x_0) and using a finite approximation step h that influences the accuracy of the obtained approximation. In this paper, a new framework for solving ODEs is presented for a new kind of a computer – the Infinity Computer (it has been patented and its working prototype exists). The new computer is (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  31. Kant's Views on Non-Euclidean Geometry.Michael Cuffaro - 2012 - Proceedings of the Canadian Society for History and Philosophy of Mathematics 25:42-54.
    Kant's arguments for the synthetic a priori status of geometry are generally taken to have been refuted by the development of non-Euclidean geometries. Recently, however, some philosophers have argued that, on the contrary, the development of non-Euclidean geometry has confirmed Kant's views, for since a demonstration of the consistency of non-Euclidean geometry depends on a demonstration of its equi-consistency with Euclidean geometry, one need only show that the axioms of Euclidean geometry have 'intuitive content' in order to show that both (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Which Mathematical Logic is the Logic of Mathematics?Jaakko Hintikka - 2012 - Logica Universalis 6 (3-4):459-475.
    The main tool of the arithmetization and logization of analysis in the history of nineteenth century mathematics was an informal logic of quantifiers in the guise of the “epsilon–delta” technique. Mathematicians slowly worked out the problems encountered in using it, but logicians from Frege on did not understand it let alone formalize it, and instead used an unnecessarily poor logic of quantifiers, viz. the traditional, first-order logic. This logic does not e.g. allow the definition and study of mathematicians’ uniformity concepts (...)
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  33. Bachelard, Enriques and Weyl: comparing some of their ideas.Giuseppe Iurato - 2012 - Quaderni di Ricerca in Didattica (Science) 4:40-50.
    Some aspects of Federigo Enriques mathematical philosophy thought are taken as central reference points for a critical historic-epistemological comparison between it and some of the main aspects of the philosophical thought of other his contemporary thinkers like, Gaston Bachelard and Hermann Weyl. From what will be exposed, it will be also possible to make out possible educational implications of the historic-epistemological approach.
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  34. Methodological Reflections on Typologies for Numerical Notations.Theodore Reed Widom & Dirk Schlimm - 2012 - Science in Context 25 (2):155-195.
    Past and present societies world-wide have employed well over 100 distinct notational systems for representing natural numbers, some of which continue to play a crucial role in intellectual and cultural development today. The diversity of these notations has prompted the need for classificatory schemes, or typologies, to provide a systematic starting point for their discussion and appraisal. The present paper provides a general framework for assessing the efficacy of these typologies relative to certain desiderata, and it uses this framework to (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  35. Niccolò Guicciardini. Isaac Newton on Mathematical Certainty and Method. Cambridge, MA: MIT Press, 2009. Pp. 422. $55.00. [REVIEW]Katherine Dunlop - 2011 - Hopos: The Journal of the International Society for the History of Philosophy of Science 1 (2):359-364.
  36. Crossing Curves: A Limit to the Use of Diagrams in Proofs†: Articles.Marcus Giaquinto - 2011 - Philosophia Mathematica 19 (3):281-307.
    This paper investigates the following question: when can one reliably infer the existence of an intersection point from a diagram presenting crossing curves or lines? Two cases are considered, one from Euclid's geometry and the other from basic real analysis. I argue for the acceptability of such an inference in the geometric case but against in the analytic case. Though this question is somewhat specific, the investigation is intended to contribute to the more general question of the extent and limits (...)
    Remove from this list   Direct download (8 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  37. On the creative role of axiomatics. The discovery of lattices by Schröder, Dedekind, Birkhoff, and others.Dirk Schlimm - 2011 - Synthese 183 (1):47-68.
    Three different ways in which systems of axioms can contribute to the discovery of new notions are presented and they are illustrated by the various ways in which lattices have been introduced in mathematics by Schröder et al. These historical episodes reveal that the axiomatic method is not only a way of systematizing our knowledge, but that it can also be used as a fruitful tool for discovering and introducing new mathematical notions. Looked at it from this perspective, the creative (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  38. Indispensability, the Testing of Mathematical Theories, and Provisional Realism.Jörgen Sjögren - 2011 - Polish Journal of Philosophy 5 (2):99-116.
    Mathematical concepts are explications, in Carnap's sense, of vague or otherwise non-clear concepts; mathematical theories have an empirical and a deductive component. From this perspective, I argue that the empirical component of a mathematical theory may be tested together with the fruitfulness of its explications. Using these ideas, I furthermore give an argument for mathematical realism, based on the indispensability argument combined with a weakened version of confirmational holism.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  39. Exploratory experimentation in experimental mathematics: A glimpse at the PSLQ algorithm.Henrik Kragh Sørensen - 2010 - In Benedikt Löwe & Thomas Müller (eds.), PhiMSAMP. Philosophy of Mathematics: Sociological Aspects and Mathematical Practice. College Publications. pp. 341--360.
    In the present paper, I go beyond these examples by bringing into play an example that I nd more experimental in nature, namely that of the use of the so-called PSLQ algorithm in researching integer relations between numerical constants. It is the purpose of this paper to combine a historical presentation with a preliminary exploration of some philosophical aspects of the notion of experiment in experimental mathematics. This dual goal will be sought by analysing these aspects as they are presented (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  40. Wiskunde en filosofie.Nico Krijn & Manuel Nepveu - 2009 - Utrecht: TNO.
    Drie gesprekken over de filosofie van de wiskunde.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  41. Abstraction and Intuition in Peano's Axiomatizations of Geometry.Davide Rizza - 2009 - History and Philosophy of Logic 30 (4):349-368.
    Peano's axiomatizations of geometry are abstract and non-intuitive in character, whereas Peano stresses his appeal to concrete spatial intuition in the choice of the axioms. This poses the problem of understanding the interrelationship between abstraction and intuition in his geometrical works. In this article I argue that axiomatization is, for Peano, a methodology to restructure geometry and isolate its organizing principles. The restructuring produces a more abstract presentation of geometry, which does not contradict its intuitive content but only puts it (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  42. The Euclidean Diagram.Kenneth Manders - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford University Press. pp. 80--133.
    This chapter gives a detailed study of diagram-based reasoning in Euclidean plane geometry (Books I, III), as well as an exploration how to characterise a geometric practice. First, an account is given of diagram attribution: basic geometrical claims are classified as exact (equalities, proportionalities) or co-exact (containments, contiguities); exact claims may only be inferred from prior entries in the demonstration text, but co-exact claims may be asserted based on what is seen in the diagram. Diagram control by constructions is necessary (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark   95 citations  
  43. On Abstraction and the Importance of Asking the Right Research Questions: Could Jordan have Proved the Jordan-Hölder Theorem?Dirk Schlimm - 2008 - Erkenntnis 68 (3):409-420.
    In 1870 Jordan proved that the composition factors of two composition series of a group are the same. Almost 20 years later Hölder (1889) was able to extend this result by showing that the factor groups, which are quotient groups corresponding to the composition factors, are isomorphic. This result, nowadays called the Jordan-Hölder Theorem, is one of the fundamental theorems in the theory of groups. The fact that Jordan, who was working in the framework of substitution groups, was able to (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  44. Lisa A. Shabel. Mathematics in Kant's Critical Philosophy: Reflections on Mathematical Practice. Studies in Philosophy Outstanding Dissertations, Robert Nozick, ed. New York & London: Routledge, 2003. ISBN 0-415-93955-0. Pp. 178. [REVIEW]Lisa Shabel - 2007 - Philosophia Mathematica 15 (3):366-386.
    In this interesting and engaging book, Shabel offers an interpretation of Kant's philosophy of mathematics as expressed in his critical writings. Shabel's analysis is based on the insight that Kant's philosophical standpoint on mathematics cannot be understood without an investigation into his perception of mathematical practice in the seventeenth and eighteenth centuries. She aims to illuminate Kant's theory of the construction of concepts in pure intuition—the basis for his conclusion that mathematical knowledge is synthetic a priori. She does this through (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  45. Mathematical Method and Proof.Jeremy Avigad - 2006 - Synthese 153 (1):105-159.
    On a traditional view, the primary role of a mathematical proof is to warrant the truth of the resulting theorem. This view fails to explain why it is very often the case that a new proof of a theorem is deemed important. Three case studies from elementary arithmetic show, informally, that there are many criteria by which ordinary proofs are valued. I argue that at least some of these criteria depend on the methods of inference the proofs employ, and that (...)
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  46. Axiomatics and progress in the light of 20th century philosophy of science and mathematics.Dirk Schlimm - 2006 - In Benedikt Löwe, Volker Peckhaus & T. Rasch (eds.), Foundations of the Formal Sciences IV. College Publications. pp. 233–253.
    This paper is a contribution to the question of how aspects of science have been perceived through history. In particular, I will discuss how the contribution of axiomatics to the development of science and mathematics was viewed in 20th century philosophy of science and philosophy of mathematics. It will turn out that in connection with scientific methodology, in particular regarding its use in the context of discovery, axiomatics has received only very little attention. This is a rather surprising result, since (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  47. Mark Steiner: The Applicability of Mathematics as a Philosophical Problem. [REVIEW]Rinat Nugayev - 2003 - Philosophy of Science 70 (3):628-631.
  48. Proof, Reliability, and Mathematical Knowledge.Anthony Peressini - 2003 - Theoria 69 (3):211-232.
    With respect to the confirmation of mathematical propositions, proof possesses an epistemological authority unmatched by other means of confirmation. This paper is an investigation into why this is the case. I make use of an analysis drawn from an early reliability perspective on knowledge to help make sense of mathematical proofs singular epistemological status.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  49. Maximizing Principles and Mathematical Methodology.Alan Baker - 2002 - Logique Et Analyse 45.
    Remove from this list  
     
    Export citation  
     
    Bookmark   1 citation  
  50. The Geometers of God: Mathematics and Reaction in the Kingdom of Naples.Massimo Mazzotti - 1998 - Isis 89:674-701.
1 — 50 / 57