About this topic
Summary Mathematical structuralism is the view on which mathematical theories, rather than being about mathematical objects (like THE number zero, THE number one, etc., if there are such things), are about classes of structures (e.g., all omega sequences) whatever the objects in such structures are and whatever their nature is. The view comes in two important variants. Ante rem structuralism is a type of mathematical platonism, on which structures are abstract mathematical objects existing independently of their instances (called systems). In rebus structuralism is the view on which mathematical theories are about systems, which do not have to be abstract. So the former has to handle the problems that mathematical platonism encounters and the latter has to handle the problems encountered by mathematical nominalism. Apart from that, both approaches face specific challenges related to how the notion of a structure is understood and how it is to be squared with mathematical practice and the applicability of mathematics. 
Key works Benacerraf 1965Hellman 1989Resnik 1997Shapiro 1997S. Chihara 2003.
Introductions Start with appropriate sections of Horsten 2008 and references therein. Also worth a read are Shapiro 2010 and Shapiro 1996.
Related categories

316 found
Order:
1 — 50 / 316
  1. The Residual Access Problem.Sharon Berry - manuscript
    A range of current truth-value realist philosophies of mathematics allow one to reduce the Benacerraf Problem to a problem concerning mathematicians' ability to recognize which conceptions of pure mathematical structures are coherent – in a sense which can be cashed out in terms of logical possibility. In this paper I will clarify what it takes to solve this `residual' access problem and then present a framework for solving it.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  2. The Cultural Phenomenology of Qualitative Quantity - Work in Progress - Introduction Autobiographical.Borislav Dimitrov - manuscript
    This study is about the Quality. Here I have dealt with the quality that differs significantly from the common understanding of quality /as determined quality/ that arise from the law of dialectics. This new quality is the quality of the quantity /quality of the quantitative changes/, noticed in philosophy by Plato as “quality of numbers”, and later developed by Hegel as “qualitative quantity. The difference between the known determined quality and qualitative quantity is evident in the exhibit form of these (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3. On the Self-Predicative Universals of Category Theory.David Ellerman - manuscript
    This paper shows how the universals of category theory in mathematics provide a model (in the Platonic Heaven of mathematics) for the self-predicative strand of Plato's Theory of Forms as well as for the idea of a "concrete universal" in Hegel and similar ideas of paradigmatic exemplars in ordinary thought. The paper also shows how the always-self-predicative universals of category theory provide the "opposite bookend" to the never-self-predicative universals of iterative set theory and thus that the paradoxes arose from having (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4. A Few Historical-Critical Glances on Mathematical Ontology Through the Hermann Weyl and Edmund Husserl Works.Giuseppe Iurato - manuscript
    From the general history of culture, with a particular attention turned towards the personal and intellectual relationships between Hermann Weyl and Edmund Husserl, it will be possible to identify certain historical-critical moments from which a philosophical reflection concerning aspects of the ontology of mathematics may be carried out. In particular, a notable epistemological relevance of group theory methods will stand out.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5. Names and Objects.Dan Kurth - manuscript
    In this paper I try to fortify the nominalistic objectology (cf. Meinong's 'Gegenstandstheorie') with essentialist means. This also is intended as a preparation for introducing Information Monism.
    Remove from this list   Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  6. How Can Mathematical Objects Be Real but Mind-Dependent?Hazhir Roshangar - manuscript
    Taking mathematics as a language based on empirical experience, I argue for an account of mathematics in which its objects are abstracta that describe and communicate the structure of reality based on some of our ancestral interactions with their environment. I argue that mathematics as a language is mostly invented, and it is mind-dependent in a specific sense. However, the bases of mathematics will characterize it as a real, non-fictional science of structures.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  7. Review of Mathematics as a Science of Patterns. [REVIEW]M. Giaquinto - forthcoming - Mind.
    Remove from this list  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Izvlečki• abstracts.Mathematical Structuralism is A. Kind ofPlatonism - forthcoming - Filozofski Vestnik.
    Remove from this list  
    Translate
     
     
    Export citation  
     
    Bookmark  
  9. Modal Structuralism and Theism.Silvia Jonas - forthcoming - In Fiona Ellis (ed.), New Models of Religious Understanding. Oxford: Oxford University Press.
    Drawing an analogy between modal structuralism about mathematics and theism, I o er a structuralist account that implicitly de nes theism in terms of three basic relations: logical and metaphysical priority, and epis- temic superiority. On this view, statements like `God is omniscient' have a hypothetical and a categorical component. The hypothetical component provides a translation pattern according to which statements in theistic language are converted into statements of second-order modal logic. The categorical component asserts the logical possibility of the (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  10. Structuralism and the Applicability of Mathematics.Jairo José Silvdaa - forthcoming - Axiomathes.
    In this paper I argue for the view that structuralism offers the best perspective for an acceptable account of the applicability of mathematics in the empirical sciences. Structuralism, as I understand it, is the view that mathematics is not the science of a particular type of objects, but of structural properties of arbitrary domains of entities, regardless of whether they are actually existing, merely presupposed or only intentionally intended.
    Remove from this list  
    Translate
     
     
    Export citation  
     
    Bookmark  
  11. Points as Higher-Order Constructs: Whitehead’s Method of Extensive Abstraction.Achille C. Varzi - forthcoming - In Stewart Shapiro & Geoffrey Hellman (eds.), The History of Continua: Philosophical and Mathematical Perspectives. Oxford: Oxford University Press.
    Euclid’s definition of a point as “that which has no part” has been a major source of controversy in relation to the epistemological and ontological presuppositions of classical geometry, from the medieval and modern disputes on indivisibilism to the full development of point-free geometries in the 20th century. Such theories stem from the general idea that all talk of points as putative lower-dimensional entities must and can be recovered in terms of suitable higher-order constructs involving only extended regions (or bodies). (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  12. Mathematics as a Science of Non-Abstract Reality: Aristotelian Realist Philosophies of Mathematics.James Franklin - 2021 - Foundations of Science 26:1-18.
    There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article lays out and compares these (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  13. A Sketch of Reality.Phillip Bricker - 2020 - In Modal Matters: Essays in Metaphysics. Oxford: Oxford University Press. pp. 3-39.
    In this introductory chapter to my collection of papers, Modal Matters, I present my tripartite account of reality. First, I endorse a plenitudinous Platonism: for every consistent mathematical theory, there is in reality a mathematical system in which the theory is true. Second, for any way of distributing fundamental qualitative properties over mathematical structures, there is a portion of reality that has that structure with fundamental properties distributed in that way; some of these portions of reality, when isolated, are the (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  14. The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics.Vasil Penchev - 2020 - Cultural Anthropology eJournal (Elsevier: SSRN) 5 (136):1-12.
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for completeness. This paper (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  15. The Ontology of Words: A Structural Approach.Ryan M. Nefdt - 2019 - Inquiry: An Interdisciplinary Journal of Philosophy 62 (8):877-911.
    ABSTRACTWords form a fundamental basis for our understanding of linguistic practice. However, the precise ontology of words has eluded many philosophers and linguists. A persistent difficulty for most accounts of words is the type-token distinction [Bromberger, S. 1989. “Types and Tokens in Linguistics.” In Reflections on Chomsky, edited by A. George, 58–90. Basil Blackwell; Kaplan, D. 1990. “Words.” Aristotelian Society Supplementary Volume LXIV: 93–119]. In this paper, I present a novel account of words which differs from the atomistic and platonistic (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  16. Modal Structuralism and Reflection.Sam Roberts - 2019 - Review of Symbolic Logic 12 (4):823-860.
    Modal structuralism promises an interpretation of set theory that avoids commitment to abstracta. This article investigates its underlying assumptions. In the first part, I start by highlighting some shortcomings of the standard axiomatisation of modal structuralism, and propose a new axiomatisation I call MSST (for Modal Structural Set Theory). The main theorem is that MSST interprets exactly Zermelo set theory plus the claim that every set is in some inaccessible rank of the cumulative hierarchy. In the second part of the (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  17. The Semantic Plights of the Ante-Rem Structuralist.Bahram Assadian - 2018 - Philosophical Studies 175 (12):1-20.
    A version of the permutation argument in the philosophy of mathematics leads to the thesis that mathematical terms, contrary to appearances, are not genuine singular terms referring to individual objects; they are purely schematic or variables. By postulating ‘ante-rem structures’, the ante-rem structuralist aims to defuse the permutation argument and retain the referentiality of mathematical terms. This paper presents two semantic problems for the ante- rem view: (1) ante-rem structures are themselves subject to the permutation argument; (2) the ante-rem structuralist (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  18. Modal Structuralism Simplified.Sharon Berry - 2018 - Canadian Journal of Philosophy 48 (2):200-222.
    Since Benacerraf’s ‘What Numbers Could Not Be, ’ there has been a growing interest in mathematical structuralism. An influential form of mathematical structuralism, modal structuralism, uses logical possibility and second order logic to provide paraphrases of mathematical statements which don’t quantify over mathematical objects. These modal structuralist paraphrases are a useful tool for nominalists and realists alike. But their use of second order logic and quantification into the logical possibility operator raises concerns. In this paper, I show that the work (...)
    Remove from this list   Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  19. What Are Structural Properties?†.Johannes Korbmacher & Georg Schiemer - 2018 - Philosophia Mathematica 26 (3):295-323.
    Informally, structural properties of mathematical objects are usually characterized in one of two ways: either as properties expressible purely in terms of the primitive relations of mathematical theories, or as the properties that hold of all structurally similar mathematical objects. We present two formal explications corresponding to these two informal characterizations of structural properties. Based on this, we discuss the relation between the two explications. As will be shown, the two characterizations do not determine the same class of mathematical properties. (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  20. Haecceities and Mathematical Structuralism.Christopher Menzel - 2018 - Philosophia Mathematica:84-111.
    Recent work in the philosophy of mathematics has suggested that mathematical structuralism is not committed to a strong form of the Identity of Indiscernibles (II). José Bermúdez demurs, and argues that a strong form of II can be warranted on structuralist grounds by countenancing identity properties, or haecceities, as legitimately structural. Typically, structuralists dismiss such properties as obviously non-structural. I will argue to the contrary that haecceities can be viewed as structural but that this concession does not warrant Bermdez’s version (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  21. Inferentialism and Structuralism: A Tale of Two Theories.Ryan Mark Nefdt - 2018 - Logique Et Analyse 61 (244):489-512.
    This paper aims to unite two seemingly disparate themes in the philosophy of mathematics and language respectively, namely ante rem structuralism and inferentialism. My analysis begins with describing both frameworks in accordance with their genesis in the work of Hilbert. I then draw comparisons between these philosophical views in terms of their similar motivations and similar objections to the referential orthodoxy. I specifically home in on two points of comparison, namely the role of norms and the relation of ontological dependence (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  22. What We Talk About When We Talk About Numbers.Richard Pettigrew - 2018 - Annals of Pure and Applied Logic 169 (12):1437-1456.
    In this paper, I describe and motivate a new species of mathematical structuralism, which I call Instrumental Nominalism about Set-Theoretic Structuralism. As the name suggests, this approach takes standard Set-Theoretic Structuralism of the sort championed by Bourbaki and removes its ontological commitments by taking an instrumental nominalist approach to that ontology of the sort described by Joseph Melia and Gideon Rosen. I argue that this avoids all of the problems that plague other versions of structuralism.
    Remove from this list   Direct download (10 more)  
     
    Export citation  
     
    Bookmark  
  23. The Applicability of Mathematics to Physical Modality.Nora Berenstain - 2017 - Synthese 194 (9):3361-3377.
    This paper argues that scientific realism commits us to a metaphysical determination relation between the mathematical entities that are indispensible to scientific explanation and the modal structure of the empirical phenomena those entities explain. The argument presupposes that scientific realism commits us to the indispensability argument. The viewpresented here is that the indispensability of mathematics commits us not only to the existence of mathematical structures and entities but to a metaphysical determination relation between those entities and the modal structure of (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  24. Mathematics and Its Applications, A Transcendental-Idealist Perspective.Jairo Da Silva - 2017 - Springer.
    This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal science, mathematical ontology: what (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  25. Category Theory and Set Theory as Theories About Complementary Types of Universals.David P. Ellerman - 2017 - Logic and Logical Philosophy 26 (2):1-18.
    Instead of the half-century old foundational feud between set theory and category theory, this paper argues that they are theories about two different complementary types of universals. The set-theoretic antinomies forced naïve set theory to be reformulated using some iterative notion of a set so that a set would always have higher type or rank than its members. Then the universal u_{F}={x|F(x)} for a property F() could never be self-predicative in the sense of u_{F}∈u_{F}. But the mathematical theory of categories, (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  26. Philosophy of Mathematics.Øystein Linnebo - 2017 - Princeton, NJ: Princeton University Press.
    Mathematics is one of the most successful human endeavors—a paradigm of precision and objectivity. It is also one of our most puzzling endeavors, as it seems to deliver non-experiential knowledge of a non-physical reality consisting of numbers, sets, and functions. How can the success and objectivity of mathematics be reconciled with its puzzling features, which seem to set it apart from all the usual empirical sciences? This book offers a short but systematic introduction to the philosophy of mathematics. Readers are (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark   6 citations  
  27. Poincaré on the Foundation of Geometry in the Understanding.Jeremy Shipley - 2017 - In Maria Zack & Dirk Schlimm (eds.), Research in History and Philosophy of Mathematics: The CSHPM 2016 Annual Meeting in Calgary, Alberta. Springer. pp. 19-37.
    This paper is about Poincaré’s view of the foundations of geometry. According to the established view, which has been inherited from the logical positivists, Poincaré, like Hilbert, held that axioms in geometry are schemata that provide implicit definitions of geometric terms, a view he expresses by stating that the axioms of geometry are “definitions in disguise.” I argue that this view does not accord well with Poincaré’s core commitment in the philosophy of geometry: the view that geometry is the study (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28. Decision-Making Process and Information.Daegene Song - 2017 - INSPIRE-HEP, High Energy Physics (HEP) Database, CERN Online Publications, EUROPE.
    One of the most important concepts in logic and the foundations of mathematics may be useful in providing an explanation for the cosmological constant problem. A connection between self-reference and consciousness has been previously discussed due to their similar nature of making a reference to itself. Vacuum observation has the property of self-reference and consciousness in the sense that the observer is observing one's own reference frame of energy. In this paper, the cyclical loop model of self-reference is applied to (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  29. Univalent Foundations as Structuralist Foundations.Dimitris Tsementzis - 2017 - Synthese 194 (9):3583-3617.
    The Univalent Foundations of Mathematics provide not only an entirely non-Cantorian conception of the basic objects of mathematics but also a novel account of how foundations ought to relate to mathematical practice. In this paper, I intend to answer the question: In what way is UF a new foundation of mathematics? I will begin by connecting UF to a pragmatist reading of the structuralist thesis in the philosophy of mathematics, which I will use to define a criterion that a formal (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  30. Structure and Categoricity: Determinacy of Reference and Truth Value in the Philosophy of Mathematics.Tim Button & Sean Walsh - 2016 - Philosophia Mathematica 24 (3):283-307.
    This article surveys recent literature by Parsons, McGee, Shapiro and others on the significance of categoricity arguments in the philosophy of mathematics. After discussing whether categoricity arguments are sufficient to secure reference to mathematical structures up to isomorphism, we assess what exactly is achieved by recent ‘internal’ renditions of the famous categoricity arguments for arithmetic and set theory.
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  31. Stairway to Heaven: The Abstract Method and Levels of Abstraction in Mathematics.Jean Pierre Marquis & Jean-Pierre Marquis - 2016 - The Mathematical Intelligencer 38 (3):41-51.
    In this paper, following the claims made by various mathematicians, I try to construct a theory of levels of abstraction. I first try to clarify the basic components of the abstract method as it developed in the first quarter of the 20th century. I then submit an explication of the notion of levels of abstraction. In the final section, I briefly explore some of main philosophical consequences of the theory.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. What If Haecceity is Not a Property?Woosuk Park - 2016 - Foundations of Science 21 (3):511-526.
    In some sense, both ontological and epistemological problems related to individuation have been the focal issues in the philosophy of mathematics ever since Frege. However, such an interest becomes manifest in the rise of structuralism as one of the most promising positions in recent philosophy of mathematics. The most recent controversy between Keränen and Shapiro seems to be the culmination of this phenomenon. Rather than taking sides, in this paper, I propose to critically examine some common assumptions shared by both (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  33. John P. Burgess. Rigor and Structure. Oxford: Oxford University Press, 2015. ISBN: 978-0-19-872222-9 ; 978-0-19-103360-5 . Pp. Xii + 215. [REVIEW]Richard Pettigrew - 2016 - Philosophia Mathematica 24 (1):129-136.
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  34. Circularities In The Contemporary Philosophical Accounts Of The Applicability Of Mathematics In The Physical Universe.Catalin Barboianu - 2015 - Revista de Filosofie 61 (5):517-542.
    Contemporary philosophical accounts of the applicability of mathematics in physical sciences and the empirical world are based on formalized relations between the mathematical structures and the physical systems they are supposed to represent within the models. Such relations were constructed both to ensure an adequate representation and to allow a justification of the validity of the mathematical models as means of scientific inference. This article puts in evidence the various circularities (logical, epistemic, and of definition) that are present in these (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  35. Review Of: Hodesdon, K. “Mathematica Representation: Playing a Role”. Philosophical Studies (2014) 168:769–782. Mathematical Reviews. MR 3176431.John Corcoran - 2015 - MATHEMATICAL REVIEWS 2015:3176431.
    This 4-page review-essay—which is entirely reportorial and philosophically neutral as are my other contributions to MATHEMATICAL REVIEWS—starts with a short introduction to the philosophy known as mathematical structuralism. The history of structuralism traces back to George Boole (1815–1864). By reference to a recent article various feature of structuralism are discussed with special attention to ambiguity and other terminological issues. The review-essay includes a description of the recent article. The article’s 4-sentence summary is quoted in full and then analyzed. The point (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  36. James Franklin: An Aristotelian Realist Philosophy of Mathematics: Mathematics as the Science of Quantity and Structure.Peter Forrest - 2015 - Studia Neoaristotelica 12 (1):105-109.
    This paper is a book review of "An Aristotelian Realist Philosophy of Mathematics: Mathematics as the Science of Quantity and Structure" by James Franklin.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  37. Structuralism and Its Ontology.Marc Gasser - 2015 - Ergo: An Open Access Journal of Philosophy 2:1-26.
    A prominent version of mathematical structuralism holds that mathematical objects are at bottom nothing but "positions in structures," purely relational entities without any sort of nature independent of the structure to which they belong. Such an ontology is often presented as a response to Benacerraf's "multiple reductions" problem, or motivated on hermeneutic grounds, as a faithful representation of the discourse and practice of mathematics. In this paper I argue that there are serious difficulties with this kind of view: its proponents (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  38. Review of An Aristotelian Realist Philosophy of Mathematics. [REVIEW]Max Jones - 2015 - Philosophia Mathematica 23 (2):281-288.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  39. A Reply to Heathcote's: On the Exhaustion of Mathematical Entities by Structures.Teresa Kouri - 2015 - Axiomathes 25 (3):345-357.
    In this article I respond to Heathcote’s “On the Exhaustion of Mathematical Entities by Structures”. I show that his ontic exhaustion issue is not a problem for ante rem structuralists. First, I show that it is unlikely that mathematical objects can occur across structures. Second, I show that the properties that Heathcote suggests are underdetermined by structuralism are not so underdetermined. Finally, I suggest that even if Heathcote’s ontic exhaustion issue if thought of as a problem of reference, the structuralist (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  40. An Aristotelian Realist Philosophy of Mathematics: Mathematics as the Science of Quantity and Structure, by Franklin, James: Hampshire: Routledge, 2014, Pp. X + 308, £63. [REVIEW]Catherine Legg - 2015 - Australasian Journal of Philosophy 93 (4):837-837.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  41. Say My Name. An Objection to Ante Rem Structuralism.Tim Räz - 2015 - Philosophia Mathematica 23 (1):116-125.
    I raise an objection to Stewart Shapiro's version of ante rem structuralism: I show that it is in conflict with mathematical practice. Shapiro introduced so-called ‘finite cardinal structures’ to illustrate features of ante rem structuralism. I establish that these structures have a well-known counterpart in mathematics, but this counterpart is incompatible with ante rem structuralism. Furthermore, there is a good reason why, according to mathematical practice, these structures do not behave as conceived by Shapiro's ante rem structuralism.
    Remove from this list   Direct download (9 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  42. Mathematical Structuralism, Modal Nominalism, and the Coherence Principle.James S. J. Schwartz - 2015 - Philosophia Mathematica 23 (3):367-385.
    According to Stewart Shapiro's coherence principle, structures exist whenever they can be coherently described. I argue that Shapiro's attempts to justify this principle are circular, as he relies on criticisms of modal nominalism which presuppose the coherence principle. I argue further that when the coherence principle is not presupposed, his reasoning more strongly supports modal nominalism than ante rem structuralism.
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  43. Carnapian Structuralism.Holger Andreas - 2014 - Erkenntnis 79 (S8):1373-1391.
    This paper aims to set forth Carnapian structuralism, i.e., a syntactic view of the structuralist approach which is deeply inspired by Carnap’s dual level conception of scientific theories. At its core is the axiomatisation of a metatheoretical concept AE(T) which characterises those extensions of an intended application that are admissible in the sense of being models of the theory-element T and that satisfy all links, constraints and specialisations. The union of axiom systems of AE(T) (where T is an element of (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  44. Perspectives on Structuralism: Preface.Holger Andreas & Frank Zenker - 2014 - Erkenntnis 79 (S8):1365-1365.
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  45. Structuralism, Invariance, and Univalence.Steve Awodey - 2014 - Philosophia Mathematica 22 (1):1-11.
    The recent discovery of an interpretation of constructive type theory into abstract homotopy theory suggests a new approach to the foundations of mathematics with intrinsic geometric content and a computational implementation. Voevodsky has proposed such a program, including a new axiom with both geometric and logical significance: the Univalence Axiom. It captures the familiar aspect of informal mathematical practice according to which one can identify isomorphic objects. While it is incompatible with conventional foundations, it is a powerful addition to homotopy (...)
    Remove from this list   Direct download (13 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  46. Models and Computability.W. Dean - 2014 - Philosophia Mathematica 22 (2):143-166.
    Computationalism holds that our grasp of notions like ‘computable function’ can be used to account for our putative ability to refer to the standard model of arithmetic. Tennenbaum's Theorem has been repeatedly invoked in service of this claim. I will argue that not only do the relevant class of arguments fail, but that the result itself is most naturally understood as having the opposite of a reference-fixing effect — i.e., rather than securing the determinacy of number-theoretic reference, Tennenbaum's Theorem points (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  47. An Aristotelian Realist Philosophy of Mathematics: Mathematics as the Science of Quantity and Stucture.James Franklin - 2014 - Palgrave MacMillan.
    An Aristotelian Philosophy of Mathematics breaks the impasse between Platonist and nominalist views of mathematics. Neither a study of abstract objects nor a mere language or logic, mathematics is a science of real aspects of the world as much as biology is. For the first time, a philosophy of mathematics puts applied mathematics at the centre. Quantitative aspects of the world such as ratios of heights, and structural ones such as symmetry and continuity, are parts of the physical world and (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  48. Global and Local.James Franklin - 2014 - Mathematical Intelligencer 36 (4).
    The global/local contrast is ubiquitous in mathematics. This paper explains it with straightforward examples. It is possible to build a circular staircase that is rising at any point (locally) but impossible to build one that rises at all points and comes back to where it started (a global restriction). Differential equations describe the local structure of a process; their solution describes the global structure that results. The interplay between global and local structure is one of the great themes of mathematics, (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  49. From Structuralism to Pluralism.Michèle Friend - 2014 - In Pluralism in Mathematics: A New Position in Philosophy of Mathematics. Springer Verlag.
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  50. On the Exhaustion of Mathematical Entities by Structures.Adrian Heathcote - 2014 - Axiomathes 24 (2):167-180.
    There has been considerable discussion in the literature of one kind of identity problem that mathematical structuralism faces: the automorphism problem, in which the structure is unable to individuate the mathematical entities in its domain. Shapiro (Philos Math 16(3):285–309, 2008) has partly responded to these concerns. But I argue here that the theory faces an even more serious kind of identity problem, which the theory can’t overcome staying within its remit. I give two examples to make the point.
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
1 — 50 / 316