About this topic
Summary Traditional formulations of quantum mechanics rely on an unanalysed concept of measurement. Quantum systems are treated as evolving via the unitary Schrodinger evolution, except when they are measured or observed; then, all components of the state are discarded except the one corresponding to the actual measurement result. The component which remains is then regarded as the new state of the system and again is evolved forwards according to the unitary evolution. The measurement problem is the problem of explaining why this two-stage procedure employing a primitive concept of measurement works so well.
Key works Bell 2004 contains a number of exceptionally clear discussions of the measurement problem. Bohr 1935 contains the first explicit claim that measurement plays a fundamental role in quantum theory.
Introductions Albert 1992
Related categories

306 found
Order:
1 — 50 / 306
  1. How to Make Sense of Quantum Mechanics : Fundamental Physical Theories and Primitive Ontology.Valia Allori - manuscript
    Quantum mechanics has always been regarded as, at best, puzzling, if not contradictory. The aim of the paper is to explore a particular approach to fundamental physical theories, the one based on the notion of primitive ontology. This approach, when applied to quantum mechanics, makes it a paradox-free theory.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  2. Kantian and Neo-Kantian First Principles for Physical and Metaphysical Cognition.Michael E. Cuffaro - manuscript
    I argue that Immanuel Kant's critical philosophy—in particular the doctrine of transcendental idealism which grounds it—is best understood as an `epistemic' or `metaphilosophical' doctrine. As such it aims to show how one may engage in the natural sciences and in metaphysics under the restriction that certain conditions are imposed on our cognition of objects. Underlying Kant's doctrine, however, is an ontological posit, of a sort, regarding the fundamental nature of our cognition. This posit, sometimes called the `discursivity thesis', while considered (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Bimodal Quantum Theory.Saurav Dwivedi - manuscript
    Some variants of quantum theory theorize dogmatic "unimodal" states-of-being, and are based on hodge-podge classical-quantum language. They are based on ontic syntax, but pragmatic semantics. This error was termed semantic inconsistency [1]. Measurement seems to be central problem of these theories, and widely discussed in their interpretation. Copenhagen theory deviates from this prescription, which is modeled on experience. A complete quantum experiment is "bimodal". An experimenter creates the system-under-study in initial mode of experiment, and annihilates it in the final. The (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  4. On Classical and Quantum Logical Entropy.David Ellerman - manuscript
    The notion of a partition on a set is mathematically dual to the notion of a subset of a set, so there is a logic of partitions dual to Boole's logic of subsets (Boolean logic is usually mis-specified as "propositional" logic). The notion of an element of a subset has as its dual the notion of a distinction of a partition (a pair of elements in different blocks). Boole developed finite logical probability as the normalized counting measure on elements of (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  5. Putting Probabilities First. How Hilbert Space Generates and Constrains Them.Michael Janas, Michael Cuffaro & Michel Janssen - manuscript
    We use Bub's (2016) correlation arrays and Pitowksy's (1989b) correlation polytopes to analyze an experimental setup due to Mermin (1981) for measurements on the singlet state of a pair of spin-12 particles. The class of correlations allowed by quantum mechanics in this setup is represented by an elliptope inscribed in a non-signaling cube. The class of correlations allowed by local hidden-variable theories is represented by a tetrahedron inscribed in this elliptope. We extend this analysis to pairs of particles of arbitrary (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  6. The Invalid Inference of Universality in Quantum Mechanics.Andrew Knight - manuscript
    The universality assumption (“U”) that quantum wave states only evolve by linear or unitary dynamics has led to a variety of paradoxes in the foundations of physics. U is not directly supported by empirical evidence but is rather an inference from data obtained from microscopic systems. The inference of U conflicts with empirical observations of macroscopic systems, giving rise to the century-old measurement problem and subjecting the inference of U to a higher standard of proof, the burden of which lies (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  7. Matters of Time Directionality in Quantum Physics.Jean-Christophe Lindner - manuscript
    This is the second of two reports concerning the issue of time directionality in fundamental theoretical physics. Here a fresh perspective is offered on several aspects of the problem of the interpretation of quantum theory which centers around a reconsideration of the significance of the requirement of time reversal symmetry. Following a critical review of early time-symmetric formulations of quantum mechanics, it is argued that a more consistent approach must overcome the contradictions of the orthodox interpretation that follow from its (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  8. Bohr’s Relational Holism and the Classical-Quantum Interaction.Mauro Dorato - 2016
    In this paper I present and critically discuss the main strategies that Bohr used and could have used to fend off the charge that his interpretation does not provide a clear-cut distinction between the classical and the quantum domain. In particular, in the first part of the paper I reassess the main arguments used by Bohr to advocate the indispensability of a classical framework to refer to quantum phenomena. In this respect, by using a distinction coming from an apparently unrelated (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  9. How Decoherence Can Solve the Measurement Problem.Dieter Zeh - manuscript
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  10. Does Consciousness-Collapse Quantum Mechanics Facilitate Dualistic Mental Causation?Alin C. Cucu - forthcoming - Journal of Cognitive Science.
    One of the most serious challenges (if not the most serious challenge) for interactive psycho-physical dualism (henceforth interactive dualism or ID) is the so-called ‘interaction problem’. It has two facets, one of which this article focuses on, namely the apparent tension between interactions of non-physical minds in the physical world and physical laws of nature. One family of approaches to alleviate or even dissolve this tension is based on a collapse solution (‘consciousness collapse/CC) of the measurement problem in quantum mechanics (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  11. Why Quantum Measurements Yield Single Values.H. S. Perlman - 2021 - Foundations of Physics 51 (1):1-6.
    It is shown that the Born Rule probabilities, i.e. the squares of the moduli of the coefficients in a pure state superposition, refer to mutually exclusive events consequent on measurement. It is also shown that the eigenstates in a pure state superposition are not mutually exclusive events. If the Born Rule is to be retained as the fundamental interpretative postulate of quantum mechanics then it follows, firstly, that the probabilities necessarily refer not to the eigenstates but to the eigenvalues to (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12. Measurement and Quantum Dynamics in the Minimal Modal Interpretation of Quantum Theory.Jacob A. Barandes & David Kagan - 2020 - Foundations of Physics 50 (10):1189-1218.
    Any realist interpretation of quantum theory must grapple with the measurement problem and the status of state-vector collapse. In a no-collapse approach, measurement is typically modeled as a dynamical process involving decoherence. We describe how the minimal modal interpretation closes a gap in this dynamical description, leading to a complete and consistent resolution to the measurement problem and an effective form of state collapse. Our interpretation also provides insight into the indivisible nature of measurement—the fact that you can't stop a (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  13. Quantum Theory is Not Only About Information.Laura Felline - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:256-265.
    In his recent book Bananaworld. Quantum mechanics for primates, Jeff Bub revives and provides a mature version of his influential information-theoretic interpretation of Quantum Theory (QT). In this paper, I test Bub’s conjecture that QT should be interpreted as a theory about information, by examining whether his information-theoretic interpretation has the resources to explain (or explain away) quantum conundrums. The discussion of Bub’s theses will also serve to investigate, more in general, whether other approaches succeed in defending the claim that (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  14. Reformulating Bell's Theorem: The Search for a Truly Local Quantum Theory.Mordecai Waegell & Kelvin J. McQueen - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 70:39-50.
    The apparent nonlocality of quantum theory has been a persistent concern. Einstein et al. and Bell emphasized the apparent nonlocality arising from entanglement correlations. While some interpretations embrace this nonlocality, modern variations of the Everett-inspired many worlds interpretation try to circumvent it. In this paper, we review Bell's "no-go" theorem and explain how it rests on three axioms, local causality, no superdeterminism, and one world. Although Bell is often taken to have shown that local causality is ruled out by the (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  15. In Defence of the Self-Location Uncertainty Account of Probability in the Many-Worlds Interpretation.Kelvin J. McQueen & Lev Vaidman - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66:14-23.
    We defend the many-worlds interpretation of quantum mechanics against the objection that it cannot explain why measurement outcomes are predicted by the Born probability rule. We understand quantum probabilities in terms of an observer's self-location probabilities. We formulate a probability postulate for the MWI: the probability of self-location in a world with a given set of outcomes is the absolute square of that world's amplitude. We provide a proof of this postulate, which assumes the quantum formalism and two principles concerning (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  16. Where Does Quanta Meet Mind?Carlos Montemayor & J. de Barros - 2019 - In J. De Barros & Carlos Montemayor (eds.), Quanta and Mind. Springer Verlag.
    The connection between quantum physics and the mind has been debated for almost a hundred years. There are several proposals as to how quantum effects might be relevant to understanding consciousness, including von Neumann’s Consciousness Causes Collapse interpretation (CCC), Penrose’s Orchestrated objective reduction (Orch OR), Atmanspacher quantum emergence theory, or Vitiello’s field theory. In this paper, we examine the CCC, in particular Stapp’s theory of interaction of mind and matter, and discuss how this imposes constraints to possible brain structures. We (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark   2 citations  
  17. Reality and the Probability Wave.Daniel Shanahan - 2019 - International Journal of Quantum Foundations 5:51-68.
    Effects associated in quantum mechanics with a divisible probability wave are explained as physically real consequences of the equal but opposite reaction of the apparatus as a particle is measured. Taking as illustration a Mach-Zehnder interferometer operating by refraction, it is shown that this reaction must comprise a fluctuation in the reradiation field of complementary effect to the changes occurring in the photon as it is projected into one or other path. The evolution of this fluctuation through the experiment will (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  18. Quantum Mechanics Between Ontology and Epistemology.Florian J. Boge - 2018 - Springer (European Studies in Philosophy of Science).
    This book explores the prospects of rivaling ontological and epistemic interpretations of quantum mechanics (QM). It concludes with a suggestion for how to interpret QM from an epistemological point of view and with a Kantian touch. It thus refines, extends, and combines existing approaches in a similar direction. -/- The author first looks at current, hotly debated ontological interpretations. These include hidden variables-approaches, Bohmian mechanics, collapse interpretations, and the many worlds interpretation. He demonstrates why none of these ontological interpretations can (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  19. Book Review of S. Gao "Protective Measurement and Quantum Reality". [REVIEW]Valia Allori - 2017 - British Journal for the Philosophy of Science:x-y.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  20. Simon Friederich: Interpreting Quantum Theory: A Therapeutic Approach: Palgrave Macmillan, New York, 2015, Xiii + 202 Pp. [REVIEW]Florian Boge - 2017 - Erkenntnis 82 (2):443-449.
    Simon Friederich’s Therapeutic Approach to quantum theory (QT) sheds new light on the status of the quantum state. In particular, Friederich presents revisionary ideas on how to exactly differentiate objective from subjective elements of the theory and thereby improves upon previous stabs at an epistemic interpretation of quantum states. The book not only provides interesting perspectives for the cognoscenti but is also written with sufficient care and free of unnecessary technicalities so as to be accessible and worth reading for the (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21. Quantum Mechanics in Terms of Realism.Arthur Jabs - 2017 - arXiv.Org.
    We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in time according to (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  22. Karl Popper, Science and Enlightenment.Nicholas Maxwell - 2017 - London: UCL Press.
    Karl Popper is famous for having proposed that science advances by a process of conjecture and refutation. He is also famous for defending the open society against what he saw as its arch enemies – Plato and Marx. Popper’s contributions to thought are of profound importance, but they are not the last word on the subject. They need to be improved. My concern in this book is to spell out what is of greatest importance in Popper’s work, what its failings (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  23. Is QBism the Future of Quantum Physics? [REVIEW]Kelvin McQueen - 2017 - Quantum Times 2017.
    The purpose of this book is to explain Quantum Bayesianism (‘QBism’) to “people without easy access to mathematical formulas and equations” (4-5). Qbism is an interpretation of quantum mechanics that “doesn’t meddle with the technical aspects of the theory [but instead] reinterprets the fundamental terms of the theory and gives them new meaning” (3). The most important motivation for QBism, enthusiastically stated on the book’s cover, is that QBism provides “a way past quantum theory’s paradoxes and puzzles” such that much (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  24. Quantum Mechanics in a New Light.Ulrich Mohrhoff - 2017 - Foundations of Science 22 (3):517-537.
    Although the present paper looks upon the formal apparatus of quantum mechanics as a calculus of correlations, it goes beyond a purely operationalist interpretation. Having established the consistency of the correlations with the existence of their correlata, and having justified the distinction between a domain in which outcome-indicating events occur and a domain whose properties only exist if their existence is indicated by such events, it explains the difference between the two domains as essentially the difference between the manifested world (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  25. Grete Hermann - Between Physics and Philosophy.Elise Crull & Guido Bacciagaluppi (eds.) - 2016 - Springer.
  26. Ψ-Epistemic Quantum Cosmology?Peter W. Evans, Sean Gryb & Karim P. Y. Thébault - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 56:1-12.
    This paper provides a prospectus for a new way of thinking about the wavefunction of the universe: a Ψ-epistemic quantum cosmology. We present a proposal that, if successfully implemented, would resolve the cosmological measurement problem and simultaneously allow us to think sensibly about probability and evolution in quantum cosmology. Our analysis draws upon recent work on the problem of time in quantum gravity and causally symmet- ric local hidden variable theories. Our conclusion weighs the strengths and weaknesses of the approach (...)
    Remove from this list   Direct download (9 more)  
     
    Export citation  
     
    Bookmark  
  27. The Quantum Mechanics of Being and Its Manifestation.Ulrich Mohrhoff - 2016 - Cosmology 24.
    How can quantum mechanics be (i) the fundamental theoretical framework of contemporary physics and (ii) a probability calculus that presupposes the events to which, and on the basis of which, it assigns probabilities? The question is answered without invoking knowledge or observers, by interpreting the necessary distinction between two kinds of physical quantities - unconditionally definite quantities and quantities that have values only if they are measured - as a distinction between the manifested world and its manifestation.(The arXived version contains (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28. Interpretation Neutrality in the Classical Domain of Quantum Theory.Joshua Rosaler - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:54-72.
    I show explicitly how concerns about wave function collapse and ontology can be decoupled from the bulk of technical analysis necessary to recover localized, approximately Newtonian trajectories from quantum theory. In doing so, I demonstrate that the account of classical behavior provided by decoherence theory can be straightforwardly tailored to give accounts of classical behavior on multiple interpretations of quantum theory, including the Everett, de Broglie-Bohm and GRW interpretations. I further show that this interpretation-neutral, decoherence-based account conforms to a general (...)
    Remove from this list   Direct download (10 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  29. Many-Measurements or Many-Worlds? A Dialogue.Diederik Aerts & Massimiliano Sassoli de Bianchi - 2015 - Foundations of Science 20 (4):399-427.
    Many advocates of the Everettian interpretation consider that theirs is the only approach to take quantum mechanics really seriously, and that this approach allows to deduce a fantastic scenario for our reality, one that consists of an infinite number of parallel worlds that branch out continuously. In this article, written in dialogue form, we suggest that quantum mechanics can be taken even more seriously, if the many-worlds view is replaced by a many-measurements view. This allows not only to derive the (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  30. Primitive Ontology in a Nutshell.Valia Allori - 2015 - International Journal of Quantum Foundations 1 (2):107-122.
    The aim of this paper is to summarize a particular approach of doing metaphysics through physics - the primitive ontology approach. The idea is that any fundamental physical theory has a well-defined architecture, to the foundation of which there is the primitive ontology, which represents matter. According to the framework provided by this approach when applied to quantum mechanics, the wave function is not suitable to represent matter. Rather, the wave function has a nomological character, given that its role in (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  31. O problema ontológico da consciência na mecânica quântica.Raoni Wohnrath Arroyo - 2015 - Dissertation, Universidade Estadual de Maringá
    Quantum mechanics is an area of Physics that deals with subatomic phenomena. It can be extracted from a vision of the physical world which contradicts many aspects of our everyday perception, prompting many philosophical debates and admitting different interpretations. Among the wide range of problems within the interpretation of quantum theory, there is the measurement problem. Some philosophical aspects of the problems concerning the notion of “measurement” in quantum mechanics are analyzed in order to identify how the problem arises in (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  32. On Tracks in a Cloud Chamber.G. F. Dell’Antonio - 2015 - Foundations of Physics 45 (1):11-21.
    It is an experimental fact that \ -decays produce in a cloud chamber at most one track and that this track points in a random direction. This seems to contradict the description of decay in Quantum Mechanics: according to Gamow a spherical wave is produced and moves radially according to Schrödinger’s equation. It is as if the interaction with the supersaturated vapor turned the wave into a particle. The aim of this note is to place this effect in the context (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Four Tails Problems for Dynamical Collapse Theories.Kelvin J. McQueen - 2015 - Studies in the History and Philosophy of Modern Physics 49:10-18.
    The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many authors dismiss (...)
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  34. “Formal” Versus “Empirical” Approaches to Quantum–Classical Reduction.Joshua Rosaler - 2015 - Topoi 34 (2):325-338.
    I distinguish two types of reduction within the context of quantum-classical relations, which I designate “formal” and “empirical”. Formal reduction holds or fails to hold solely by virtue of the mathematical relationship between two theories; it is therefore a two-place, a priori relation between theories. Empirical reduction requires one theory to encompass the range of physical behaviors that are well-modeled in another theory; in a certain sense, it is a three-place, a posteriori relation connecting the theories and the domain of (...)
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  35. The Shaky Game +25, Or: On Locavoracity.Laura Ruetsche - 2015 - Synthese 192 (11):3425-3442.
    Taking Arthur Fine’s The Shaky Game as my inspiration, and the recent 25th anniversary of the publication of that work as the occasion to exercise that inspiration, I sketch an alternative to the “Naturalism” prevalent among philosophers of physics. Naturalism is a methodology eventuating in a metaphysics. The methodology is to seek the deep framework assumptions that make the best sense of science; the metaphysics is furnished by those assumptions and supported by their own support of science. The alternative presented (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  36. Predictions and Primitive Ontology in Quantum Foundations: A Study of Examples.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghì - 2014 - British Journal for the Philosophy of Science 65 (2):323-352.
    A major disagreement between different views about the foundations of quantum mechanics concerns whether for a theory to be intelligible as a fundamental physical theory it must involve a ‘primitive ontology’ (PO), i.e. variables describing the distribution of matter in four-dimensional space–time. In this article, we illustrate the value of having a PO. We do so by focusing on the role that the PO plays for extracting predictions from a given theory and discuss valid and invalid derivations of predictions. To (...)
    Remove from this list   Direct download (10 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  37. Review Of: Christopher G. Timpson, Quantum Information Theory and the Foundations of Quantum Mechanics. [REVIEW]Michael E. Cuffaro - 2014 - Philosophy of Science 81 (4):681-684,.
  38. Quantum Mechanics and the Manifestation of the World.Ulrich Mohrhoff - 2014 - Quantum Studies: Mathematics and Foundations 1 (3-4):195-202.
    Quantum theory’s irreducible empirical core is a probability calculus. While it presupposes the events to which (and on the basis of which) it serves to assign probabilities, and therefore cannot account for their occurrence, it has to be consistent with it. It must make it possible to identify a system of observables that have measurement-independent values.What makes this possible is the incompleteness of the spatiotemporal differentiation of the physical world. This is shown by applying a novel interpretive principle to interfering (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. Complete Measurements of Quantum Observables.Juha-Pekka Pellonpää - 2014 - Foundations of Physics 44 (1):71-90.
    We define a complete measurement of a quantum observable (POVM) as a measurement of the maximally refined (rank-1) version of the POVM. Complete measurements give information on the multiplicities of the measurement outcomes and can be viewed as state preparation procedures. We show that any POVM can be measured completely by using sequential measurements or maximally refinable instruments. Moreover, the ancillary space of a complete measurement can be chosen to be minimal.
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  40. The Status of Determinism in Proofs of the Impossibility of a Noncontextual Model of Quantum Theory.Robert W. Spekkens - 2014 - Foundations of Physics 44 (11):1125-1155.
    In order to claim that one has experimentally tested whether a noncontextual ontological model could underlie certain measurement statistics in quantum theory, it is necessary to have a notion of noncontextuality that applies to unsharp measurements, i.e., those that can only be represented by positive operator-valued measures rather than projection-valued measures. This is because any realistic measurement necessarily has some nonvanishing amount of noise and therefore never achieves the ideal of sharpness. Assuming a generalized notion of noncontextuality that applies to (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  41. On the Metaphysics of Quantum Mechanics.Valia Allori - 2013 - In Soazig Lebihan (ed.), Precis de la Philosophie de la Physique. Vuibert.
    What is quantum mechanics about? The most natural way to interpret quantum mechanics realistically as a theory about the world might seem to be what is called wave function ontology: the view according to which the wave function mathematically represents in a complete way fundamentally all there is in the world. Erwin Schroedinger was one of the first proponents of such a view, but he dismissed it after he realized it led to macroscopic superpositions (if the wave function evolves in (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  42. Primitive Ontology and the Structure of Fundamental Physical Theories.Valia Allori - 2013 - In Alyssa Ney & David Z. Albert (eds.), The Wave Function: Essays in the Metaphysics of Quantum Mechanics. Oxford University Press.
    For a long time it was believed that it was impossible to be realist about quantum mechanics. It took quite a while for the researchers in the foundations of physics, beginning with John Stuart Bell [Bell 1987], to convince others that such an alleged impossibility had no foundation. Nowadays there are several quantum theories that can be interpreted realistically, among which Bohmian mechanics, the GRW theory, and the many-worlds theory. The debate, though, is far from being over: in what respect (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   33 citations  
  43. Insolubility Theorems and EPR Argument.Guido Bacciagaluppi - 2013 - European Journal for Philosophy of Science 3 (1):87-100.
    I present a very general and simple argument—based on the no-signalling theorem—showing that within the framework of the unitary Schrödinger equation it is impossible to reproduce the phenomenological description of quantum mechanical measurements (in particular the collapse of the state of the measured system) by assuming a suitable mixed initial state of the apparatus. The thrust of the argument is thus similar to that of the ‘insolubility theorems’ for the measurement problem of quantum mechanics (which, however, focus on the impossibility (...)
    Remove from this list   Direct download (12 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  44. How Much Time Does a Measurement Take?Carlos Alexandre Brasil, L. A. de Castro & R. D. J. Napolitano - 2013 - Foundations of Physics 43 (5):642-655.
    We consider the problem of measurement using the Lindblad equation, which allows the introduction of time in the interaction between the measured system and the measurement apparatus. We use analytic results, valid for weak system-environment coupling, obtained for a two-level system in contact with a measurer (Markovian interaction) and a thermal bath (non-Markovian interaction), where the measured observable may or may not commute with the system-environment interaction. Analysing the behavior of the coherence, which tends to a value asymptotically close to (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  45. On the Debate Concerning the Proper Characterization of Quantum Dynamical Evolution.Michael E. Cuffaro & Wayne C. Myrvold - 2013 - Philosophy of Science 80 (5):1125-1136.
    There has been a long-standing and sometimes passionate debate between physicists over whether a dynamical framework for quantum systems should incorporate not completely positive (NCP) maps in addition to completely positive (CP) maps. Despite the reasonableness of the arguments for complete positivity, we argue that NCP maps should be allowed, with a qualification: these should be understood, not as reflecting ‘not completely positive’ evolution, but as linear extensions, to a system’s entire state space, of CP maps that are only partially (...)
    Remove from this list   Direct download (11 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  46. A Conservative Solution to the Stochastic Dynamical Reduction Problem: Case of Spin-Z Measurement of a Spin-1/2 Particle.T. Halabi - 2013 - Foundations of Physics 43 (10):1252-1256.
    Stochastic dynamical reduction for the case of spin-z measurement of a spin-1/2 particle describes a random walk on the spin-z axis. The measurement’s result depends on which of the two points: spin-z=±ħ/2 is reached first. Born’s rule is recovered as long as the expected step size in spin-z is independent of proximity to endpoints. Here, we address the questions raised by this description: (1) When is collapse triggered, and what triggers it? (2) Why is the expected step size in spin-z (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  47. A Symmetrical Interpretation of the Klein-Gordon Equation.Michael B. Heaney - 2013 - Foundations of Physics 43 (6):733-746.
    This paper presents a new Symmetrical Interpretation (SI) of relativistic quantum mechanics which postulates: quantum mechanics is a theory about complete experiments, not particles; a complete experiment is maximally described by a complex transition amplitude density; and this transition amplitude density never collapses. This SI is compared to the Copenhagen Interpretation (CI) for the analysis of Einstein’s bubble experiment. This SI makes several experimentally testable predictions that differ from the CI, solves one part of the measurement problem, resolves some inconsistencies (...)
    Remove from this list   Direct download (9 more)  
     
    Export citation  
     
    Bookmark  
  48. Changes of Separation Status During Registration and Scattering.P. Hájíček - 2012 - Foundations of Physics 42 (4):555-581.
    In our previous work, a new approach to the notorious problem of quantum measurement was proposed. Existing treatments of the problem were incorrect because they ignored the disturbance of measurement by identical particles and standard quantum mechanics had to be modified to obey the cluster separability principle. The key tool was the notion of separation status. Changes of separation status occur during preparations, registrations and scattering on macroscopic targets. Standard quantum mechanics does not provide any correct rules that would govern (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  49. Quantum Properties of a Single Beam Splitter.F. Laloë & W. J. Mullin - 2012 - Foundations of Physics 42 (1):53-67.
    When a single beam-splitter receives two beams of bosons described by Fock states (Bose-Einstein condensates at very low temperatures), interesting generalizations of the two-photon Hong-Ou-Mandel effect take place for larger number of particles. The distributions of particles at two detectors behind the beam splitter can be understood as resulting from the combination of two effects, the spontaneous phase appearing during quantum measurement, and the quantum angle. The latter introduces quantum “population oscillations”, which can be seen as a generalized Hong-Ou-Mandel effect, (...)
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  50. Do We Really Understand Quantum Mechanics?Franck Laloë - 2012 - Cambridge University Press.
    Machine generated contents note: Introduction; 1. Historical perspective; 2. Present situation, remaining conceptual difficulties; 3. The theorem of Einstein, Podolsky and Rosen; 4. Bell theorem; 5. More theorems; 6. Quantum entanglement; 7. Applications of quantum entanglement; 8. Quantum measurement; 9. Experiments, quantum reduction seen in real time; 10. Various interpretations; Conclusion; Appendices; Index.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   14 citations  
1 — 50 / 306