Philosophy of Mathematics

Edited by Øystein Linnebo (University of Oslo)
Assistant editor: Sam Roberts (Universität Konstanz)
Contents
2366 found
Order:
1 — 50 / 2366
  1. Towards a Computational Ontology for the Philosophy of Wittgenstein: Representing Aspects of the Tractarian Philosophy of Mathematics.Jakub Gomułka - 2023 - Analiza I Egzystencja 63:27-54.
    The present paper concerns the Wittgenstein ontology project: an attempt to create a Semantic Web representation of Ludwig Wittgenstein’s philosophy. The project has been in development since 2006, and its current state enables users to search for information about Wittgenstein-related documents and the documents themselves. However, the developers have much more ambitious goals: they attempt to provide a philosophical subject matter knowledge base that would comprise the claims and concepts formulated by the philosopher. The current knowledge representation technology is not (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2. Solstice-Equinox.Ilexa Yardley - 2023 - Https://Medium.Com/the-Circular-Theory/.
    The explanation for everything in Nature, everything in human history, future, and-or, past, is the conservation of a circle, proven by, the circular-linear relationship between, the solstice and the equinox.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  3. On Non-Eliminative Structuralism. Unlabeled Graphs as a Case Study, Part B†.Hannes Leitgeb - 2021 - Philosophia Mathematica 29 (1):64-87.
    This is Part B of an article that defends non-eliminative structuralism about mathematics by means of a concrete case study: a theory of unlabeled graphs. Part A motivated an understanding of unlabeled graphs as structures sui generis and developed a corresponding axiomatic theory of unlabeled graphs. Part B turns to the philosophical interpretation and assessment of the theory: it points out how the theory avoids well-known problems concerning identity, objecthood, and reference that have been attributed to non-eliminative structuralism. The part (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  4. Twierdzenie Gödla i jego interpretacje filozoficzne: od mechanicyzmu do postmodernizmu.Stanisław Krajewski - 2003 - Warszawa: Wydawn. Instytutu Filozofii i Socjologii PAN.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  5. Osnovy kompʹi︠u︡ternykh alhorytmiv.M. M. Hlybovet︠s︡ʹ - 2003 - Kyïv: KM Akademii︠a︡.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  6. Matematicheskai︠a︡ logika i algebra: sbornik stateĭ: k 100-letii︠u︡ sp dni︠a︡ rozhdenii︠a︡ akademika Petra Sergeevicha Novikova.S. I. Adi︠a︡n & P. S. Novikov (eds.) - 2003 - Moskva: Maik Nauka/Interperiodika.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  7. Matematika i opyt.A. G. Barabashev (ed.) - 2003 - Moskva: Izdatelʹstvo Moskovskogo universiteta.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  8. Osnovy matematicheskoĭ infinitologii.E. V. Karpushkin - 2003 - Murmansk: MSM Investigators. Edited by A. V. Ledent︠s︡ov.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  9. Combining experimentation and theory: a homage to Abe Mamdani.E. Trillas (ed.) - 2012 - Berlin: Springer.
    The unexpected and premature passing away of Professor Ebrahim H. "Abe" Mamdani on January, 22, 2010, was a big shock to the scientific community, to all his friends and colleagues around the world, and to his close relatives. Professor Mamdani was a remarkable figure in the academic world, as he contributed to so many areas of science and technology. Of great relevance are his latest thoughts and ideas on the study of language and its handling by computers. The fuzzy logic (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  10. Multidimensional MOD planes.Vasantha Kandasamy & B. W. - 2015 - Bruxelles, Belgium: EuropaNova. Edited by K. Ilanthenral & Florentin Smarandache.
    The main purpose of this book is to define and develop the notion of multi-dimensional MOD planes. Here, several interesting features enjoyed by these multi-dimensional MOD planes are studied and analyzed. Interesting problems are proposed to the reader.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  11. Easier to break from inside than from outside =.Florentin Smarandache - 2017 - Bruxelles, Belgium: Pons Editions. Edited by Andruşa R. Vătuiu.
    This book contains concrete examples from history, economy, biology, digital world, nuclear physics, agriculture and so on about breaking a neutrosophic dynamic system (i.e. a dynamic system that has indeterminacy) from inside. We define a neutrosophic mathematical model using a system of ordinary differential equations and the neutrosophic probability in order to approximate the process of breaking from inside a neutrosophic complex dynamic system. It shows that for breaking from inside it is needed a smaller force than for breaking from (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  12. Jōhō riron no tame no sūri ronrigaku =.Masanori Itai - 2017 - Tōkyō-to Bunkyō-ku: Kyōritsu Shuppan.
    数理論理学の基本となる命題・述語論理から、チューリング機械・形式手法・ブール代数といった「少し先」の内容までを丁寧に解説。.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  13. Quadruple neutrosophic theory and applications.Florentin Smarandache, Memet Şahin, Vakkas Uluçay & Abdullah Kargın (eds.) - 2020 - Brussels, Belgium: Pons Editions.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  14. Lógos and Máthēma 2: studies in the philosophy of logic and mathematics.Roman Murawski - 2020 - New York: Peter Lang.
    The volume consists of thirteen papers devoted to various problems of the philosophy of logic and mathematics. They can be divided into two groups. The first group contains papers devoted to some general problems of the philosophy of mathematics whereas the second group - papers devoted to the history of logic in Poland and to the work of Polish logicians and math-ematicians in the philosophy of mathematics and logic. Among considered problems are: meaning of reverse mathematics, proof in mathematics, the (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  15. What's an algorithm?Kaitlyn Siu - 2022 - Tulsa, OK: Kane Miller, A Division of EDC Publishing. Edited by Marcelo Badari.
    This series provides a complete introduction to essential coding skills. Key coding concepts are explained through fun robot adventure stories. Written by a qualified coding educator and neuroscience expert.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  16. Concise introduction to logic and set theory.Iqbal H. Jebril - 2021 - Boca Raton: CRC Press, Taylor & Francis Group. Edited by Hemen Dutta & Ilwoo Cho.
    This book deals with two important branches of mathematics, namely, logic and set theory. Logic and set theory are closely related and play very crucial roles in the foundation of mathematics, and together produce several results in all of mathematics. The topics of logic and set theory are required in many areas of physical sciences, engineering, and technology. The book offers solved examples and exercises, and provides reasonable details to each topic discussed, for easy understanding. The book is designed for (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  17. Bake infinite pie with X + Y.Eugenia Cheng - 2022 - New York: Little, Brown and Company. Edited by Amber Ren.
    X and Y are desperate to bake infinite pie! With the help of quirky and uber-smart Aunt Z, X and Y will use math concepts to bake their way to success!
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  18. Algoritmi, monaci e mercanti: il calcolo nella vita quotidiana del Medioevo.Giorgio Ausiello - 2022 - Torino: Codice edizioni.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  19. Digital platforms and algorithmic subjectivities.Emiliana Armano, Marco Briziarelli & Elisabetta Risi (eds.) - 2022 - London: University of Westminister Press.
    This collection considers algorithms at work, alongside black box control, platform society theory and the formation of subjectivities.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  20. Saenggak ŭi ch'ukche.Ŏ-ryŏng Yi - 2022 - Kyŏnggi-do P'aju-si: Samusa Ch'aekpang.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  21. Algorithms & sequencing.Teddy Borth - 2022 - Minneapolis, Minnesota: Cody Koala, an imprint of Pop!.
    This title introduces the concepts of algorithms and sequencing in coding by using relatable real-world examples in the reader's everyday life. Vivid photographs and easy-to-read text aid comprehension for early readers. Features include a table of contents, an infographic, fun facts, Making Connections questions, a glossary, and an index. QR Codes in the book give readers access to book-specific resources to further their learning. Aligned to Common Core Standards and correlated to state standards. Cody Koala is an imprint of Pop!, (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  22. Introduction to mathematics: number, space, and structure.Scott A. Taylor - 2023 - Providence, Rhode Island: American Mathematical Society.
    This textbook is designed for an Introduction to Proofs course organized around the themes of number and space. Concepts are illustrated using both geometric and number examples, while frequent analogies and applications help build intuition and context in the humanities, arts, and sciences. Sophisticated mathematical ideas are introduced early and then revisited several times in a spiral structure, allowing students to progressively develop rigorous thinking. Throughout, the presentation is enlivened with whimsical illustrations, apt quotations, and glimpses of mathematical history and (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  23. Numbers and the world: essays on math and beyond.David Mumford - 2023 - Providence, Rhode Island: American Mathematical Society.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  24. Metafísica de los conceptos matemáticos fundamentales (espacio, tiempo, cantidad, límite) y del análisis llamado infinitesimal.Claro Cornelio Dassen - 1901 - Buenos Aires,: Est. tip. de Tailhade & Rosselli.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  25. Sulla classificazione delle conoscenze matematiche.Alfonso del Re - 1903 - Napoli,: Stab. tip. della R. Università, A. Tessitore & figlio.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  26. Sul metodo d'insegnamento per la matematica.Primo Guadagno - 1903 - Piazza Armerina: Tip. Pietro Giovenco.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  27. Die grundlagen der angewandten geometrie.Hugo Dingler - 1911 - Leipzig,: Akademische verlagsgesellschaft m.b.h..
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  28. Zum streit über die Grundlagen der Mathematik.Richard Hönigswald - 1912 - Heidelberg,: C. Winter.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  29. Methodological approach to the efficiency evaluation of innovative processes in logistical activity of enterprise.I. Kryvovyazyuk, Y. Volynchuk & I. Pushkarchuk - 2015 - Actual Problems of Economics 174 (12):408-414.
    The paper presents a pioneering approach to assessing the effectiveness of innovation processes in logistics. Indicators and the procedure of evaluating the efficiency of innovation processes in enterprise logistic activity are described. Possibilities of applying this approach are suggested.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  30. Forever Finite.Kip Sewell - 2023 - Alexandria, VA: Rond Books.
    Infinity is not what it seems. Infinity is commonly assumed to be a logical concept, reliable for conducting mathematics, describing the Universe, and understanding the divine. Most of us are educated to take for granted that there exist infinite sets of numbers, that lines contain an infinite number of points, that space is infinite in expanse, that time has an infinite succession of events, that possibilities are infinite in quantity, and over half of the world’s population believes in a divine (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. The paradoxes of Mr. Russell.Edwin Ray Guthrie - 1915 - Lancaster, Pa.,: Press of the New era printing company.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  32. The notion of number and the notion of class.Richard Allen Arms - 1917 - Philadelphia,: Palala Press.
    This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  33. A Note on Logical Paradoxes and Aristotelian Square of Opposition.Beppe Brivec - manuscript
    According to Aristotle if a universal proposition (for example: “All men are white”) is true, its contrary proposition (“All men are not white”) must be false; and, according to Aristotle, if a universal proposition (for example: “All men are white”) is true, its contradictory proposition (“Not all men are white”) must be false. I agree with what Aristotle wrote about universal propositions, but there are universal propositions which have no contrary proposition and have no contradictory proposition. The proposition X “All (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  34. Paul Cohen’s philosophy of mathematics and its reflection in his mathematical practice.Roy Wagner - 2023 - Synthese 202 (2):1-22.
    This paper studies Paul Cohen’s philosophy of mathematics and mathematical practice as expressed in his writing on set-theoretic consistency proofs using his method of forcing. Since Cohen did not consider himself a philosopher and was somewhat reluctant about philosophy, the analysis uses semiotic and literary textual methodologies rather than mainstream philosophical ones. Specifically, I follow some ideas of Lévi-Strauss’s structural semiotics and some literary narratological methodologies. I show how Cohen’s reflections and rhetoric attempt to bridge what he experiences as an (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35. Das Werden der Zahlen im Menschen und in der Menschheit auf Grund von Psychologie und Geschichte.Edwin Wilk - 1922 - Leipzig,: Ferdinand Hirt & Sohn.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  36. Kritik der mathematischen vernunft.J. E. Gerlach - 1922 - Bonn,: F. Cohen.
    Die allgemeine anzahlenlehre.--Der araum und die grössenlehre.--Die gestaltenlehre.--Besondere gestalten.--Gleich und gleich.--Plus, minus und das irgend-i.--Anhang: Zur "gemeinverständlichen" erörterund der relativitätstheorie.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  37. Matematiki i ee znachenie dli︠a︡ chelovechestva.Vladīmīr Andreevīch Steklov - 1923
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  38. The number system of arithmetic and algebra.D. K. Picken - 1923 - Melbourne,: Melbourne university press.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  39. On Algorithms, Effective Procedures, and Their Definitions.Philippos Papayannopoulos - forthcoming - Philosophia Mathematica:nkad011.
    I examine the classical idea of ‘algorithm’ as a sequential, step-by-step, deterministic procedure (i.e., the idea of ‘algorithm’ that was already in use by the 1930s), with respect to three themes, its relation to the notion of an ‘effective procedure’, its different roles and uses in logic, computer science, and mathematics (focused on numerical analysis), and its different formal definitions proposed by practitioners in these areas. I argue that ‘algorithm’ has been conceptualized and used in contrasting ways in the above (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics
     Mathematical Cognition, Misc
     Phenomenology of Mathematics
     Numerical Cognition
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Mathematical Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40. Espaces courbes.Cesare Burali-Forti - 1924 - Torino,: Sten. Edited by Tommaso Boggio, Pensa, Angelo & [From Old Catalog].
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Debunking Arguments about Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Aristotelianism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Debunking Arguments about Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Cognition
     Mathematical Intuition
     Visualization in Mathematics