Contents
114 found
Order:
1 — 50 / 114
  1. The Open Systems View.Michael E. Cuffaro & Stephan Hartmann - manuscript
    There is a deeply entrenched view in philosophy and physics, the closed systems view, according to which isolated systems are conceived of as fundamental. On this view, when a system is under the influence of its environment this is described in terms of a coupling between it and a separate system which taken together are isolated. We argue against this view, and in favor of the alternative open systems view, for which systems interacting with their environment are conceived of as (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  2. Derivation of the Schrödinger equation.Shan Gao - manuscript
    It is shown that the heuristic "derivation" of the Schrödinger equation in quantum mechanics textbooks can be turned into a real derivation by resorting to spacetime translation invariance and relativistic invariance.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  3. The Wave Function and Its Evolution.Shan Gao - 2011
    The meaning of the wave function and its evolution are investigated. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the requirements of spacetime translation invariance and (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  4. Meaning of the wave function.Shan Gao - 2010
    We investigate the meaning of the wave function by analyzing the mass and charge density distributions of a quantum system. According to protective measurement, a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. In a realistic interpretation, the wave function of a quantum system can be taken as a description of either a physical field or the ergodic motion of a particle. The essential difference (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  5. Individuality, quasi-sets and the double-slit experiment.Adonai S. Sant'Anna - forthcoming - Quantum Studies: Mathematics and Foundations.
    Quasi-set theory $\cal Q$ allows us to cope with certain collections of objects where the usual notion of identity is not applicable, in the sense that $x = x$ is not a formula, if $x$ is an arbitrary term. $\cal Q$ was partially motivated by the problem of non-individuality in quantum mechanics. In this paper I discuss the range of explanatory power of $\cal Q$ for quantum phenomena which demand some notion of indistinguishability among quantum objects. My main focus is (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  6. Quantum mechanical measurement in monistic systems theory.Klaus Fröhlich - 2023 - Science and Philosophy 11 (2):76-83.
    The monistic worldview aims at a uniform description of nature based on scientific models. Quantum physical systems are mutually part of the other quantum physical systems. An aperture distributes the subsystems and the wave front in all possible ways. The system only takes one of the possible paths, as measurements show. Conclusion from Bell's theorem: Before the quantum physical measurement, there is no point-like location in the universe where all the information that explains the measurement is available. Distributed information is (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  7. Sensitivity of entanglement measures in bipartite pure quantum states.Danko D. Georgiev & Stanley P. Gudder - 2022 - Modern Physics Letters B 36 (22):2250101.
    Entanglement measures quantify the amount of quantum entanglement that is contained in quantum states. Typically, different entanglement measures do not have to be partially ordered. The presence of a definite partial order between two entanglement measures for all quantum states, however, allows for meaningful conceptualization of sensitivity to entanglement, which will be greater for the entanglement measure that produces the larger numerical values. Here, we have investigated the partial order between the normalized versions of four entanglement measures based on Schmidt (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  8. THE END OF CERTAINTY - FROM BEING TO BECOMING.Alexis Karpouzos (ed.) - 2022 - ATHENS: COSMIC SPIRIT.
    We live in a universe that can be seen and experienced from many different perspectives. We therefore need to look at the universe from many different angles. Everything and everyone is a form of the universe being expressed in a particular way. In other words, each one of us can say with absolute certainly “We are the Universe!” Since we are the universe, each one of us provides a valuable perspective that complements the contributions of everyone and everything else around (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9. On momentum operators given by Killing vectors whose integral curves are geodesics.Thomas Schürmann - 2022 - Physics 4 (4): 1440-1452.
    We consider momentum operators on intrinsically curved manifolds. Given that the momentum operators are Killing vector fields whose integral curves are geodesics, it is shown that the corresponding manifold is either flat, or otherwise of compact type with positive constant sectional curvature and dimension equal to 1, 3 or 7. Explicit representations of momentum operators and the associated Casimir element will be discussed for the 3-sphere. It will be verified that the structure constants of the underlying Lie algebra are proportional (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10. How Quantum is Quantum Counterfactual Communication?Jonte R. Hance, James Ladyman & John Rarity - 2021 - Foundations of Physics 51 (1):1-17.
    Quantum Counterfactual Communication is the recently-proposed idea of using quantum physics to send messages between two parties, without any matter/energy transfer associated with the bits sent. While this has excited massive interest, both for potential ‘unhackable’ communication, and insight into the foundations of quantum mechanics, it has been asked whether this process is essentially quantum, or could be performed classically. We examine counterfactual communication, both classical and quantum, and show that the protocols proposed so far for sending signals that don’t (...)
    Remove from this list   Direct download (9 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Natural Cybernetics of Time, or about the Half of any Whole.Vasil Penchev - 2021 - Information Systems eJournal (Elsevier: SSRN) 4 (28):1-55.
    Norbert Wiener’s idea of “cybernetics” is linked to temporality as in a physical as in a philosophical sense. “Time orders” can be the slogan of that natural cybernetics of time: time orders by itself in its “screen” in virtue of being a well-ordering valid until the present moment and dividing any totality into two parts: the well-ordered of the past and the yet unordered of the future therefore sharing the common boundary of the present between them when the ordering is (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  12. Ontological Investigations in the Quantum Domain: A deflationary approach on ontology of physics.Lauro de Matos Nunes Filho - 2020 - Dissertation, Federal University of Santa Catarina
    The aim of this thesis is to propose a deflationary approach towards the ontological analysis of physical theories. Such an approach sustains that the development of ontologies for physical theories must be neutral relatively to the debate between realists and anti-realists in philosophy of physics. Mainly, our attention will be oriented towards what we called "quantum domain", which includes the non-relativistic Quantum Mechanics and variants of the Quantum Field Theory. This meta-ontological approach consists in an attempt to provide a methodology (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  13. A New Problem for Quantum Mechanics.Alexander Meehan - 2020 - British Journal for the Philosophy of Science:000-000.
    In this article I raise a new problem for quantum mechanics, which I call the control problem. Like the measurement problem, the control problem places a fundamental constraint on quantum theories. The characteristic feature of the problem is its focus on state preparation. In particular, whereas the measurement problem turns on a premise about the completeness of the quantum state ('no hidden variables'), the control problem turns on a premise about our ability to prepare or control quantum states. After raising (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  14. Kuantum Teorisi Absürdizmi (Saçmacılığı) Destekler Mi?Mücahit Özdoğan - 2019 - Sosyal Ve Beşeri Bilimler Araştırmaları Dergisi 20 (45):39-61.
    Quantum Theory has created new perspectives on reality in the human mind. The fact that the micro-world has different identities than the macro-world, as it emerges with Quantum Theory, has made the subject of reality, which underlies everything, more complex. Quantum Theory has demolished the deterministic world view drawn by classical physics, revealing a reality of reality. In addition, it has brought up new questions about customary laws to date, including logic rules because of the peculiarities of the electrons, which (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  15. Probing finite coarse-grained virtual Feynman histories with sequential weak values.Danko D. Georgiev & Eliahu Cohen - 2018 - Physical Review A 97 (5):052102.
    Feynman's sum-over-histories formulation of quantum mechanics has been considered a useful calculational tool in which virtual Feynman histories entering into a coherent quantum superposition cannot be individually measured. Here we show that sequential weak values, inferred by consecutive weak measurements of projectors, allow direct experimental probing of individual virtual Feynman histories, thereby revealing the exact nature of quantum interference of coherently superposed histories. Because the total sum of sequential weak values of multitime projection operators for a complete set of orthogonal (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16. A New Argument for the Nomological Interpretation of the Wave Function: The Galilean Group and the Classical Limit of Nonrelativistic Quantum Mechanics.Valia Allori - 2017 - International Studies in the Philosophy of Science (2):177-188.
    In this paper I investigate, within the framework of realistic interpretations of the wave function in nonrelativistic quantum mechanics, the mathematical and physical nature of the wave function. I argue against the view that mathematically the wave function is a two-component scalar field on configuration space. First, I review how this view makes quantum mechanics non- Galilei invariant and yields the wrong classical limit. Moreover, I argue that interpreting the wave function as a ray, in agreement many physicists, Galilei invariance (...)
    Remove from this list   Direct download (9 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  17. Quantum mechanics over sets: a pedagogical model with non-commutative finite probability theory as its quantum probability calculus.David Ellerman - 2017 - Synthese (12):4863-4896.
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability calculus. The previous attempts (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  18. Neutrino Oscillations with Nil Mass.Edward R. Floyd - 2017 - Foundations of Physics 47 (1):42-60.
    An alternative neutrino oscillation process is presented as a counterexample for which the neutrino may have nil mass consistent with the standard model. The process is developed in a quantum trajectories representation of quantum mechanics, which has a Hamilton–Jacobi foundation. This process has no need for mass differences between mass eigenstates. Flavor oscillations and \ oscillations are examined.
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  19. Quanta transfer in space is conserved.Henk Grimm - 2017
    The paper is replaced by a new version (12-2019): DOI: 10.5281/zenodo.3572846 -/- Physical phenomena emerge from the quantum fields everywhere in space. However, not only the phenomena emerge from the quantum fields, the law of the conservation of energy must have its origin from the same spatial structure. This paper describes the relations between the main law of physics and the mathematical structure of the “aggregated” quantum fields.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20. Theory of Everything, Ultimate Reality and the End of Humanity: Extended Sustainability by the Universal Science of Complexity.Andrei P. Kirilyuk - 2017 - Beau Bassin: LAP LAMBERT Academic Publishing.
    Instead of postulated fixed structures and abstract principles of usual positivistic science, the unreduced diversity of living world reality is consistently derived as dynamically emerging results of unreduced interaction process development, starting from its simplest configuration of two coupled homogeneous protofields. The dynamically multivalued, or complex and intrinsically chaotic, nature of these real interaction results extends dramatically the artificially reduced, dynamically single-valued projection of standard theory and solves its stagnating old and accumulating new problems, “mysteries” and “paradoxes” within the unified (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  21. Primitive Ontology and the Classical World.Valia Allori - 2016 - In R. Kastner, J. Jeknic-Dugic & G. Jaroszkiewicz (eds.), Quantum Structural Studies: Classical Emergence from the Quantum Level. World Scientific. pp. 175-199.
    In this paper I present the common structure of quantum theories with a primitive ontology, and discuss in what sense the classical world emerges from quantum theories as understood in this framework. In addition, I argue that the primitive ontology approach is better at answering this question than the rival wave function ontology approach or any other approach in which the classical world is nonreductively ‘emergent:’ even if the classical limit within this framework needs to be fully developed, the difficulties (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  22. Primitive Ontology in a Nutshell.Valia Allori - 2015 - International Journal of Quantum Foundations 1 (2):107-122.
    The aim of this paper is to summarize a particular approach of doing metaphysics through physics - the primitive ontology approach. The idea is that any fundamental physical theory has a well-defined architecture, to the foundation of which there is the primitive ontology, which represents matter. According to the framework provided by this approach when applied to quantum mechanics, the wave function is not suitable to represent matter. Rather, the wave function has a nomological character, given that its role in (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  23. Quantum Mechanics and Paradigm Shifts.Valia Allori - 2015 - Topoi 34 (2):313-323.
    It has been argued that the transition from classical to quantum mechanics is an example of a Kuhnian scientific revolution, in which there is a shift from the simple, intuitive, straightforward classical paradigm, to the quantum, convoluted, counterintuitive, amazing new quantum paradigm. In this paper, after having clarified what these quantum paradigms are supposed to be, I analyze whether they constitute a radical departure from the classical paradigm. Contrary to what is commonly maintained, I argue that, in addition to radical (...)
    Remove from this list   Direct download (9 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  24. One world, one beable.Craig Callender - 2015 - Synthese 192 (10):3153-3177.
    Is the quantum state part of the furniture of the world? Einstein found such a position indigestible, but here I present a different understanding of the wavefunction that is easy to stomach. First, I develop the idea that the wavefunction is nomological in nature, showing how the quantum It or Bit debate gets subsumed by the corresponding It or Bit debate about laws of nature. Second, I motivate the nomological view by casting quantum mechanics in a “classical” formalism (Hamilton–Jacobi theory) (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   74 citations  
  25. Conservation of information and the foundations of quantum mechanics.Giulio Chiribella & Carlo Maria Scandolo - 2015 - EPJ Web of Conferences 95:03003.
    We review a recent approach to the foundations of quantum mechanics inspired by quantum information theory. The approach is based on a general framework, which allows one to address a large class of physical theories which share basic information-theoretic features. We first illustrate two very primitive features, expressed by the axioms of causality and purity-preservation, which are satisfied by both classical and quantum theory. We then discuss the axiom of purification, which expresses a strong version of the Conservation of Information (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  26. On Tracks in a Cloud Chamber.G. F. Dell’Antonio - 2015 - Foundations of Physics 45 (1):11-21.
    It is an experimental fact that \ -decays produce in a cloud chamber at most one track and that this track points in a random direction. This seems to contradict the description of decay in Quantum Mechanics: according to Gamow a spherical wave is produced and moves radially according to Schrödinger’s equation. It is as if the interaction with the supersaturated vapor turned the wave into a particle. The aim of this note is to place this effect in the context (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Four Tails Problems for Dynamical Collapse Theories.Kelvin J. McQueen - 2015 - Studies in the History and Philosophy of Modern Physics 49:10-18.
    The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many authors dismiss (...)
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  28. A Relational Ontological Theory of Emergence and a new Nonlinear Quantum Physics.Gil Santos - 2015 - Quantum Matter 4 (3):267-273.
    In the present article, I propose to give a positive characterization of ontological emergence from a relational perspective that, in opposition both to atomism and to holism, defends that the existence-conditions, the identity and the behavior or causal role of any emergent entity are to be conceived, and explained, as constructed by diverse systems of qualitatively transformative relations. I argue that from this relational perspective, the notion of emergence can be seen as ontologically and epistemologically coherent and significant. Finally, I (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  29. Mature Scientific Theory Change: Intertheoretic Context.Rinat M. Nugayev - 2014 - In Vladimir I. Arshinov & Ilya T. Kasavin (eds.), Science and Social Map of the World. Academician V.S.Stepin's Fesrchrift. Alpha. pp. 266-279.
    A brief account of epistemological models that try to unfold the intertheoretic context of theory change is proposed. It is stated that all of them has a host of drawbacks, the most salient one being the lack of adequate description of the research traditions interaction process. The epistemological model of mature theory change, eliminating the drawback, is contemplated and illustrated.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  30. Book Review of: "Do We Really Understand Quantum Mechanics?" by Franck Laloë. [REVIEW]Valia Allori - 2013 - Notre Dame Philosophical Review.
  31. On the Debate Concerning the Proper Characterization of Quantum Dynamical Evolution.Michael E. Cuffaro & Wayne C. Myrvold - 2013 - Philosophy of Science 80 (5):1125-1136.
    There has been a long-standing and sometimes passionate debate between physicists over whether a dynamical framework for quantum systems should incorporate not completely positive (NCP) maps in addition to completely positive (CP) maps. Despite the reasonableness of the arguments for complete positivity, we argue that NCP maps should be allowed, with a qualification: these should be understood, not as reflecting ‘not completely positive’ evolution, but as linear extensions, to a system’s entire state space, of CP maps that are only partially (...)
    Remove from this list   Direct download (12 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  32. Part and whole in physics: An introduction.Richard Healey & Jos Uffink - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (1):20-21.
  33. Problem osobliwości początkowej jako geneza poszukiwania kwantowych teorii powstania Wszechświata.Marek Jakubiec - 2013 - Semina Scientiarum 12:34-48.
    This paper puts forward the problem of singularity – one of the most important issues in contemporary cosmology. Firstly, the history of “singularity” concept and basis of Penrose’s and Hawking’s theorem of singularity are discussed. Secondly, the problem of singularity is presented as a genesis of search of quantum theories of the beginning of the Universe, in which the concept of singularity is not present. One sophisticated concept of Hartle and Hawking is presented, in particular the authors’ methodology is described. (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  34. May We Verify Non-Existing Dispersion Free Ensembles By Application of Quantum Mechanics in Experiments at Perceptive and Cognitive Level?Elio Conte - 2012 - Neuroquantology 10 (1):14-19.
    Von Neumann in 1932 was the first to outline the possible non-existence of dispersion free ensembles in quantum mechanics, and he used this basic evidence to give a preliminary proof on incompatibility between quantum mechanics and local hidden variables theory. In the present paper, we give a detailed theoretical elaboration on the manner in which such a fundamental subject could be explored at perceptive and cognitive levels in humans. We also discuss a general design of the experiment that we have (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  35. Prime Number Decomposition, the Hyperbolic Function and Multi-Path Michelson Interferometers.V. Tamma, C. O. Alley, W. P. Schleich & Y. H. Shih - 2012 - Foundations of Physics 42 (1):111-121.
    The phase φ of any wave is determined by the ratio x/λ consisting of the distance x propagated by the wave and its wavelength λ. Hence, the dependence of φ on λ constitutes an analogue system for the mathematical operation of division, that is to obtain the hyperbolic function f(ξ)≡1/ξ. We take advantage of this observation to decompose integers into primes and implement this approach towards factorization of numbers in a multi-path Michelson interferometer. This work is part of a larger (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  36. Mechanics: Non-classical, Non-quantum.Elliott Tammaro - 2012 - Foundations of Physics 42 (2):284-290.
    A non-classical, non-quantum theory, or NCQ, is any fully consistent theory that differs fundamentally from both the corresponding classical and quantum theories, while exhibiting certain features common to both. Such theories are of interest for two primary reasons. Firstly, NCQs arise prominently in semi-classical approximation schemes. Their formal study may yield improved approximation techniques in the near-classical regime. More importantly for the purposes of this note, it may be possible for NCQs to reproduce quantum results over experimentally tested regimes while (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  37. On the Discrimination Between Classical and Quantum States.Giorgio Brida, Maria Bondani, Ivo P. Degiovanni, Marco Genovese, Matteo G. A. Paris, Ivano Ruo Berchera & Valentina Schettini - 2011 - Foundations of Physics 41 (3):305-316.
    With the purpose of introducing a useful tool for researches concerning foundations of quantum mechanics and applications to quantum technologies, here we address three quantumness quantifiers for bipartite optical systems: one is based on sub-shot-noise correlations, one is related to antibunching and one springs from entanglement determination. The specific cases of parametric downconversion seeded by thermal, coherent and squeezed states are discussed in detail.
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  38. The nature of nature: examining the role of naturalism in science.Bruce Gordon & William A. Dembski (eds.) - 2011 - Wilmington, DE: ISI Books.
    The world's leading authorities in the sciences and humanities—dozens of top scholars, including three Nobel laureates—join a cultural and intellectual battle that leaves no human life untouched. Is the universe self-existent, self-sufficient, and self-organizing, or is it grounded instead in a reality that transcends space, time, matter, and energy?
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  39. Vision of Oneness.Ignazio Licata & Ammar J. Sakaji (eds.) - 2011 - Aracne Editrice.
    A cura di Ignazio Licata, Ammar J. Sakaji Jeffrey A. Barrett, Enrico Celeghini, Leonardo Chiatti, Maurizio Consoli, Davide Fiscaletti, Ervin Goldfain, Annick Lesne, Maria Paola Lombardo, Mohammad Mehrafarin, Ronald Mirman, Ulrich Mohrhoff, Renato Nobili, Farrin Payandeh, Eliano Pessa, L.I Petrova, Erasmo Recami, Giovanni Salesi, Francesco Maria Scarpa, Mohammad Vahid Takook, Giuseppe Vitiello This volume comes out from an informal discussion between friends and colleagues on the answer:what topic do you think as fundamental in theoretical physics nowadays? Obviously wereceived different answers (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  40. Causality and Statistics on the Groenewold–Moyal Plane.A. P. Balachandran, Anosh Joseph & Pramod Padmanabhan - 2010 - Foundations of Physics 40 (7):692-702.
    Quantum theories constructed on the noncommutative spacetime called the Groenewold–Moyal plane exhibit many interesting properties such as Lorentz and CPT noninvariance, causality violation and twisted statistics. We show that such violations lead to many striking features that may be tested experimentally. These theories predict Pauli forbidden transitions due to twisted statistics, anisotropies in the cosmic microwave background radiation due to correlations of observables in spacelike regions and Lorentz and CPT violations in scattering amplitudes.
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  41. Ubiquitous Quantum Structure: From Psychology to Finance.Andrei Y. Khrennikov - 2010 - Springer.
    Quantum-like structure is present practically everywhere. Quantum-like models, i.e. models based on the mathematical formalism of quantum mechanics and its generalizations can be successfully applied to cognitive science, psychology, genetics, economics, finances, and game theory. This book is not about quantum mechanics as a physical theory. The short review of quantum postulates is therefore mainly of historical value: quantum mechanics is just the first example of the successful application of non-Kolmogorov probabilities, the first step towards a contextual probabilistic description of (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   33 citations  
  42. Is the quantum world composed of propensitons?Nicholas Maxwell - 2010 - In Mauricio Suárez (ed.), Probabilities, Causes and Propensities in Physics. New York: Springer. pp. 221-243.
    In this paper I outline my propensiton version of quantum theory (PQT). PQT is a fully micro-realistic version of quantum theory that provides us with a very natural possible solution to the fundamental wave/particle problem, and is free of the severe defects of orthodox quantum theory (OQT) as a result. PQT makes sense of the quantum world. PQT recovers all the empirical success of OQT and is, furthermore, empirically testable (although not as yet tested). I argue that Einstein almost put (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  43. From physics to information theory and back.Wayne C. Myrvold - 2010 - In Alisa Bokulich & Gregg Jaeger (eds.), Philosophy of quantum information and entanglement. New York: Cambridge University Press. pp. 181--207.
    Quantum information theory has given rise to a renewed interest in, and a new perspective on, the old issue of understanding the ways in which quantum mechanics differs from classical mechanics. The task of distinguishing between quantum and classical theory is facilitated by neutral frameworks that embrace both classical and quantum theory. In this paper, I discuss two approaches to this endeavour, the algebraic approach, and the convex set approach, with an eye to the strengths of each, and the relations (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  44. Discerning elementary particles.F. A. Muller & M. P. Seevinck - 2009 - Philosophy of Science 76 (2):179-200.
    We maximally extend the quantum‐mechanical results of Muller and Saunders ( 2008 ) establishing the ‘weak discernibility’ of an arbitrary number of similar fermions in finite‐dimensional Hilbert spaces. This confutes the currently dominant view that ( A ) the quantum‐mechanical description of similar particles conflicts with Leibniz’s Principle of the Identity of Indiscernibles (PII); and that ( B ) the only way to save PII is by adopting some heavy metaphysical notion such as Scotusian haecceitas or Adamsian primitive thisness. We (...)
    Remove from this list   Direct download (11 more)  
     
    Export citation  
     
    Bookmark   91 citations  
  45. Buddhism and Quantum Physics.Christian Thomas Kohl - 2008 - Concepts of Physics 8 (3):517-519.
    Rudyard Kipling, the famous english author of « The Jungle Book », born in India, wrote one day these words: « Oh, East is East and West is West, and never the twain shall meet ». In my paper I show that Kipling was not completely right. I try to show the common ground between buddhist philosophy and quantum physics. There is a surprising parallelism between the philosophical concept of reality articulated by Nagarjuna and the physical concept of reality implied (...)
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  46. Werner Heisenberg.Gregor Schiemann - 2008 - C.H. Beck.
    Gregor Schiemann führt allgemeinverständlich in das Denken dieses Physikers ein. Thema sind die Erfahrungen und Überlegungen, die Heisenberg zu seinen theoretischen Erkenntnissen geführt haben, die wesentlichen Inhalte dieser Erkenntnisse sowie die Konsequenzen, die er daraus für die Geschichte der Physik und das wissenschaftliche Weltbild gezogen hat. Heisenbergs Vorstellungswelt durchzieht durch ein Spannungsverhältnis, das heute noch das Denken vieler Wissenschaftlerinnen und Wissenschaftler bewegt. Er ist um ein umfassendes Verständnis der Naturprozesse bemüht, zugleich aber von der Berechenbarkeit und Beherrschbarkeit von Phänomenen auch (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  47. Quantising on a Category.C. J. Isham - 2005 - Foundations of Physics 35 (2):271-297.
    We review the problem of finding a general framework within which one can construct quantum theories of non-standard models for space, or space-time. The starting point is the observation that entities of this type can typically be regarded as objects in a category whose arrows are structure-preserving maps. This motivates investigating the general problem of quantising a system whose ‘configuration space’ (or history-theory analogue) is the set of objects Ob(Q) in a category Q. We develop a scheme based on constructing (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  48. The structure and interpretation of cosmology: Part II. The concept of creation in inflation and quantum cosmology.Gordon McCabe - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (1):67-102.
  49. God does not play dice. Einstein’s Still Topical Critique of Quantum Mechanics.Gergor Schiemann - 2005 - In J. Renn (ed.), Albert Einstein. Engineer of the Universe. 100 Authors for Einstein.
  50. Gott würfelt nicht. Einsteins immer noch aktuelle Kritik der Quantenmechanik.Gregor Schiemann - 2005 - In J. Renn (ed.), Albert Einstein. Ingenieur des Universums. 100 Autoren für Einstein.
    Kaum eine Äußerung Einsteins ist so bekannt wie sein Wort, dass Gott nicht würfelt. In ähnlicher Weise, wie Einstein dies unerläutert gelassen hat, ist seine gesamte Position zur Quantenmechanik, auf die es sich bezieht, von Uneindeutigkeiten nicht frei geblieben. Für seine Würfelmetapher ergibt sich ein Spielraum von gegensätzlichen Sichtweisen. Sie lässt sich zum einen mit jüngeren Forschungsresultaten verbinden und weist zum anderen auf rückschrittliche Elemente in Einsteins Denken hin. Ich wende mich zuerst diesen Elementen zu und betrachte dann eine dazu (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 114