Related

Contents
280 found
Order:
1 — 50 / 280
  1. Mathematical Analogies in Physics: the Curious Case of Gauge Symmetries.Guy Hetzroni & Noah Stemeroff - forthcoming - In Carl Posy & Yemima Ben-Menahem (eds.), Mathematical Knowledge, Objects and Applications. Springer.
    Gauge symmetries provide one of the most puzzling examples of the applicability of mathematics in physics. The presented work focuses on the role of analogical reasoning in the gauge argument, motivated by Mark Steiner's claim that the application of the gauge principle relies on a Pythagorean analogy whose success undermines naturalist philosophy. In this paper, we present two different views concerning the analogy between gravity, electromagnetism, and nuclear interactions, each providing a different philosophical response to the problem of the applicability (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. On Mereology and Metricality.Zee Perry - forthcoming - Philosophers' Imprint.
    This article motivates and develops a reductive account of the structure of certain physical quantities in terms of their mereology. That is, I argue that quantitative relations like "longer than" or "3.6-times the volume of" can be analyzed in terms of necessary constraints those quantities put on the mereological structure of their instances. The resulting account, I argue, is able to capture the intuition that these quantitative relations are intrinsic to the physical systems they’re called upon to describe and explain.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Human Thought, Mathematics, and Physical Discovery.Gila Sher - forthcoming - In Yemima Ben Menahem & Carl Posy (eds.), Mathematical Knowledge, Objects and Applications: Essays in Memory of Mark Steiner. Berlin: Springer Nature.
    In this paper I discuss Mark Steiner's view of the contribution of mathematics to physics and take up some of the questions it raises. In particular, I take up the question of discovery and explore two aspects of this question ‒ a metaphysical aspect and a related epistemic aspect. The metaphysical aspect concerns the formal structure of the physical world. Does the physical world have mathematical or formal features or constituents, and what is the nature of these constituents? The related (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  4. Ian Hacking, Why Is There Philosophy of Mathematics at All? [REVIEW]Max Harris Siegel - forthcoming - Mind 124.
  5. Structuralism and the applicability of mathematics.Jairo José Silvdaa - forthcoming - Axiomathes.
    In this paper I argue for the view that structuralism offers the best perspective for an acceptable account of the applicability of mathematics in the empirical sciences. Structuralism, as I understand it, is the view that mathematics is not the science of a particular type of objects, but of structural properties of arbitrary domains of entities, regardless of whether they are actually existing, merely presupposed or only intentionally intended.
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  6. The reasonable effectiveness of mathematics in the natural sciences.László Tisza - forthcoming - Boston Studies in the Philosophy of Science.
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  7. “In Nature as in Geometry”: Du Châtelet and the Post-Newtonian Debate on the Physical Significance of Mathematical Objects.Aaron Wells - forthcoming - In Between Leibniz, Newton, and Kant, Second Edition. Springer.
    Du Châtelet holds that mathematical representations play an explanatory role in natural science. Moreover, things proceed in nature as they do in geometry. How should we square these assertions with Du Châtelet’s idealism about mathematical objects, on which they are ‘fictions’ dependent on acts of abstraction? The question is especially pressing because some of her important interlocutors (Wolff, Maupertuis, and Voltaire) denied that mathematics informs us about the properties of real things. After situating Du Châtelet in this debate, this chapter (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Four-Way Turiyam based Characterization of Non-Euclidean Geometry.Prem Kumar Singh - 2023 - Journal of Neutrosophic and Fuzzy Ststems 5 (2):69-80.
    Recently, a problem is addressed while dealing the data with Non-Euclidean Geometry and its characterization. The mathematician found negation of fifth postulates of Euclidean geometry easily and called as Non-Euclidean geometry. However Riemannian provided negation of second postulates also which still considered as Non-Euclidean. In this case the problem arises what will happen in case negation of other Euclid Postulates exists. Same time total total or partial negation of Euclid postulates fails as hybrid Geometry. It become more crucial in case (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  9. Mathematics as a science of non-abstract reality: Aristotelian realist philosophies of mathematics.James Franklin - 2022 - Foundations of Science 27 (2):327-344.
    There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article lays out and compares these (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  10. Structure and applied mathematics.Travis McKenna - 2022 - Synthese 200 (5):1-31.
    ‘Mapping accounts’ of applied mathematics hold that the application of mathematics in physical science is best understood in terms of ‘mappings’ between mathematical structures and physical structures. In this paper, I suggest that mapping accounts rely on the assumption that the mathematics relevant to any application of mathematics in empirical science can be captured in an appropriate mathematical structure. If we are interested in assessing the plausibility of mapping accounts, we must ask ourselves: how plausible is this assumption as a (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  11. Mathematical Explanations of Physical Phenomena.Sorin Bangu - 2021 - Australasian Journal of Philosophy 99 (4):669-682.
    Can there be mathematical explanations of physical phenomena? In this paper, I suggest an affirmative answer to this question. I outline a strategy to reconstruct several typical examples of such explanations, and I show that they fit a common model. The model reveals that the role of mathematics is explicatory. Isolating this role may help to re-focus the current debate on the more specific question as to whether this explicatory role is, as proposed here, also an explanatory one.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  12. A Dilemma for Mathematical Constructivism.Samuel Kahn - 2021 - Axiomathes 31 (1):63-72.
    In this paper I argue that constructivism in mathematics faces a dilemma. In particular, I maintain that constructivism is unable to explain (i) the application of mathematics to nature and (ii) the intersubjectivity of mathematics unless (iii) it is conjoined with two theses that reduce it to a form of mathematical Platonism. The paper is divided into five sections. In the first section of the paper, I explain the difference between mathematical constructivism and mathematical Platonism and I outline my argument. (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  13. What could mathematics be for it to function in distinctively mathematical scientific explanations?Marc Lange - 2021 - Studies in History and Philosophy of Science Part A 87 (C):44-53.
    Several philosophers have suggested that some scientific explanations work not by virtue of describing aspects of the world’s causal history and relations, but rather by citing mathematical facts. This paper investigates what mathematical facts could be in order for them to figure in such “distinctively mathematical” scientific explanations. For “distinctively mathematical explanations” to be explanations by constraint, mathematical language cannot operate in science as representationalism or platonism describes. It can operate as Aristotelian realism describes. That is because Aristotelian realism enables (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  14. The applicability of mathematics in computational systems biology and its experimental relations.Miles MacLeod - 2021 - European Journal for Philosophy of Science 11 (3):1-21.
    In 1966 Richard Levins argued that applications of mathematics to population biology faced various constraints which forced mathematical modelers to trade-off at least one of realism, precision, or generality in their approach. Much traditional mathematical modeling in biology has prioritized generality and precision in the place of realism through strategies of idealization and simplification. This has at times created tensions with experimental biologists. The past 20 years however has seen an explosion in mathematical modeling of biological systems with the rise (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15. Is Mathematics Unreasonably Effective?Daniel Waxman - 2021 - Australasian Journal of Philosophy 99 (1):83-99.
    Many mathematicians, physicists, and philosophers have suggested that the fact that mathematics—an a priori discipline informed substantially by aesthetic considerations—can be applied to natural science is mysterious. This paper sharpens and responds to a challenge to this effect. I argue that the aesthetic considerations used to evaluate and motivate mathematics are much more closely connected with the physical world than one might presume, and (with reference to case-studies within Galois theory and probabilistic number theory) show that they are correlated with (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  16. Mathematical application and the no confirmation thesis.Kenneth Boyce - 2020 - Analysis 80 (1):11-20.
    Some proponents of the indispensability argument for mathematical realism maintain that the empirical evidence that confirms our best scientific theories and explanations also confirms their pure mathematical components. I show that the falsity of this view follows from three highly plausible theses, two of which concern the nature of mathematical application and the other the nature of empirical confirmation. The first is that the background mathematical theories suitable for use in science are conservative in the sense outlined by Hartry Field. (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  17. Formal Semantics and Applied Mathematics: An Inferential Account.Ryan M. Nefdt - 2020 - Journal of Logic, Language and Information 29 (2):221-253.
    In this paper, I utilise the growing literature on scientific modelling to investigate the nature of formal semantics from the perspective of the philosophy of science. Specifically, I incorporate the inferential framework proposed by Bueno and Colyvan : 345–374, 2011) in the philosophy of applied mathematics to offer an account of how formal semantics explains and models its data. This view produces a picture of formal semantic models as involving an embedded process of inference and representation applying indirectly to linguistic (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  18. The Principle of Equivalence as a Criterion of Identity.Ryan Samaroo - 2020 - Synthese 197 (8):3481-3505.
    In 1907 Einstein had the insight that bodies in free fall do not “feel” their own weight. This has been formalized in what is called “the principle of equivalence.” The principle motivated a critical analysis of the Newtonian and special-relativistic concepts of inertia, and it was indispensable to Einstein’s development of his theory of gravitation. A great deal has been written about the principle. Nearly all of this work has focused on the content of the principle and whether it has (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  19. Supertasks and Arithmetical Truth.Jared Warren & Daniel Waxman - 2020 - Philosophical Studies 177 (5):1275-1282.
    This paper discusses the relevance of supertask computation for the determinacy of arithmetic. Recent work in the philosophy of physics has made plausible the possibility of supertask computers, capable of running through infinitely many individual computations in a finite time. A natural thought is that, if supertask computers are possible, this implies that arithmetical truth is determinate. In this paper we argue, via a careful analysis of putative arguments from supertask computations to determinacy, that this natural thought is mistaken: supertasks (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Mathematical Representation and Explanation: structuralism, the similarity account, and the hotchpotch picture.Ziren Yang - 2020 - Dissertation, University of Leeds
    This thesis starts with three challenges to the structuralist accounts of applied mathematics. Structuralism views applied mathematics as a matter of building mapping functions between mathematical and target-ended structures. The first challenge concerns how it is possible for a non-mathematical target to be represented mathematically when the mapping functions per se are mathematical objects. The second challenge arises out of inconsistent early calculus, which suggests that mathematical representation does not require rigorous mathematical structures. The third challenge comes from renormalisation group (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21. Infinity and the foundations of linguistics.Ryan M. Nefdt - 2019 - Synthese 196 (5):1671-1711.
    The concept of linguistic infinity has had a central role to play in foundational debates within theoretical linguistics since its more formal inception in the mid-twentieth century. The conceptualist tradition, marshalled in by Chomsky and others, holds that infinity is a core explanandum and a link to the formal sciences. Realism/Platonism takes this further to argue that linguistics is in fact a formal science with an abstract ontology. In this paper, I argue that a central misconstrual of formal apparatus of (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  22. Revisão de ' Os Limites Exteriores da Razão ' (The Outer Limits of Reason)por Noson Yanofsky 403p (2013) (revisão revisada 2019).Michael Richard Starks - 2019 - In Delírios Utópicos Suicidas no Século XXI Filosofia, Natureza Humana e o Colapso da Civilization- Artigos e Comentários 2006-2019 5ª edição. Las Vegas, NV USA: Reality Press. pp. 188-202.
    Eu dou uma revisão detalhada de "os limites exteriores da razão" por Noson Yanofsky de uma perspectiva unificada de Wittgenstein e psicologia evolutiva. Eu indico que a dificuldade com tais questões como paradoxo na linguagem e matemática, incompletude, undecidabilidade, computabilidade, o cérebro eo universo como computadores, etc., todos surgem a partir da falta de olhar atentamente para o nosso uso da linguagem no apropriado contexto e, consequentemente, a falta de separar questões de fato científico a partir de questões de como (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  23. The ‘Miracle’ of Applicability? The Curious Case of the Simple Harmonic Oscillator.Sorin Bangu & Robert H. C. Moir - 2018 - Foundations of Physics 48 (5):507-525.
    The paper discusses to what extent the conceptual issues involved in solving the simple harmonic oscillator model fit Wigner’s famous point that the applicability of mathematics borders on the miraculous. We argue that although there is ultimately nothing mysterious here, as is to be expected, a careful demonstration that this is so involves unexpected difficulties. Consequently, through the lens of this simple case we derive some insight into what is responsible for the appearance of mystery in more sophisticated examples of (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24. Filosofia Aplicabilitatii Matematicii: Intre Irational si Rational.Catalin Barboianu - 2018 - Târgu Jiu, Romania: Infarom.
    Lucrarea tratează unul dintre “misterele” filosofiei analitice şi ale raţionalităţii însăşi, anume aplicabilitatea matematicii în ştiinţe şi în investigarea matematică a realităţii înconjurătoare, a cărei filosofie este dezvoltată în jurul sintagmei – de acum paradigmatice – ‘eficacitatea iraţională a matematicii’, aparţinând fizicianului Eugene Wigner, problemă filosofică etichetată în literatură drept “puzzle-ul lui Wigner”. Odată intraţi în profunzimea acestei probleme, investigaţia nu trebuie limitată la căutarea unor răspunsuri explicative la întrebări precum “Ce este de fapt aplicabilitatea matematicii?”, “Cum explicăm prezenţa în (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  25. Scientific explanation, unifying mathematics, and indispensability arguments.Patrick Dieveney - 2018 - Synthese 198 (1):57-77.
    Indispensability arguments occupy a prominent role in discussions of mathematical realism. While different versions of these arguments are discussed in the literature, their general structure remains the same. These arguments contend that insofar as reference to mathematical objects is indispensable to science, we are committed to the existence of these ‘objects’. Unsurprisingly, much of the debate concerning indispensability arguments focuses on the crucial contention that mathematical objects are indispensable to science. For these arguments to provide support for mathematical realism, what (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26. Applicability Problems Generalized.Michele Ginammi - 2018 - In Gabriele Pulcini & Mario Piazza (eds.), Truth, Existence and Explanation. Springer Verlag. pp. 209-224.
    In this paper, I will do preparatory work for a generalized account of applicability, that is, for an account which works for math-to-physics, math-to-math, and physics-to-math application. I am going to present and discuss some examples of these three kinds of application, and I will confront them in order to see whether it is possible to find analogies among them and whether they can be ultimately considered as instantiations of a unique pattern. I will argue that these analogies can be (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  27. The Applicability of Mathematics as a Philosophical Problem: Mathematization as Exploration.Johannes Lenhard & Michael Otte - 2018 - Foundations of Science 23 (4):719-737.
    This paper discerns two types of mathematization, a foundational and an explorative one. The foundational perspective is well-established, but we argue that the explorative type is essential when approaching the problem of applicability and how it influences our conception of mathematics. The first part of the paper argues that a philosophical transformation made explorative mathematization possible. This transformation took place in early modernity when sense acquired partial independence from reference. The second part of the paper discusses a series of examples (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  28. Reconstruction in Philosophy of Mathematics.Davide Rizza - 2018 - Dewey Studies 2 (2):31-53.
    Throughout his work, John Dewey seeks to emancipate philosophical reflection from the influence of the classical tradition he traces back to Plato and Aristotle. For Dewey, this tradition rests upon a conception of knowledge based on the separation between theory and practice, which is incompatible with the structure of scientific inquiry. Philosophical work can make progress only if it is freed from its traditional heritage, i.e. only if it undergoes reconstruction. In this study I show that implicit appeals to the (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  29. Mathematical Spandrels.Alan Baker - 2017 - Australasian Journal of Philosophy 95 (4):779-793.
    The aim of this paper is to open a new front in the debate between platonism and nominalism by arguing that the degree of explanatory entanglement of mathematics in science is much more extensive than has been hitherto acknowledged. Even standard examples, such as the prime life cycles of periodical cicadas, involve a penumbra of mathematical features whose presence can only be explained using relatively sophisticated mathematics. I introduce the term ‘mathematical spandrel’ to describe these penumbral properties, and focus on (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  30. Mathematics and Explanatory Generality.Alan Baker - 2017 - Philosophia Mathematica 25 (2):194-209.
    According to one popular nominalist picture, even when mathematics features indispensably in scientific explanations, this mathematics plays only a purely representational role: physical facts are represented, and these exclusively carry the explanatory load. I think that this view is mistaken, and that there are cases where mathematics itself plays an explanatory role. I distinguish two kinds of explanatory generality: scope generality and topic generality. Using the well-known periodical-cicada example, and also a new case study involving bicycle gears, I argue that (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  31. Rolul constitutiv al matematicii in stiinta structurala.Catalin Barboianu - 2017 - Târgu Jiu, Romania: Infarom.
    Problemele filosofie sensibile pe care le pune aplicabilitatea matematicii în ştiinţe şi viaţa de zi cu zi au conturat, pe un fond interdisciplinar, o nouă “ramură” a filosofiei ştiinţei, anume filosofia aplicabilităţii matematicii. Aplicarea cu succes a matematicii de-a lungul istoriei ştiinţei necesită reprezentare, încadrare, explicaţie, dar şi o justificare de ordin metateoretic a aplicabilităţii. Între rolurile matematicii în practica ştiinţifică, rolul constitutiv teoriilor ştiinţifice este cel a cărui analiză poate contribui esenţial la această justificare. În lucrarea de faţă, am (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  32. The Applicability of Mathematics to Physical Modality.Nora Berenstain - 2017 - Synthese 194 (9):3361-3377.
    This paper argues that scientific realism commits us to a metaphysical determination relation between the mathematical entities that are indispensible to scientific explanation and the modal structure of the empirical phenomena those entities explain. The argument presupposes that scientific realism commits us to the indispensability argument. The viewpresented here is that the indispensability of mathematics commits us not only to the existence of mathematical structures and entities but to a metaphysical determination relation between those entities and the modal structure of (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  33. Mathematics and its Applications: A Transcendental-Idealist Perspective.Jairo José da Silva - 2017 - Cham: Springer Verlag.
    This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal science, mathematical ontology: what (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  34. Research Habits in Financial Modelling: The Case of Non-normativity of Market Returns in the 1970s and the 1980s.Boudewijn De Bruin & Christian Walter - 2017 - In Emiliano Ippoliti & Ping Chen (eds.), Methods and Finance: A Unifying View on Finance, Mathematics, and Philosophy. Cham: Springer. pp. 73-93.
    In this chapter, one considers finance at its very foundations, namely, at the place where assumptions are being made about the ways to measure the two key ingredients of finance: risk and return. It is well known that returns for a large class of assets display a number of stylized facts that cannot be squared with the traditional views of 1960s financial economics (normality and continuity assumptions, i.e. Brownian representation of market dynamics). Despite the empirical counterevidence, normality and continuity assumptions (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  35. Early Modern Mathematical Principles and Symmetry Arguments.James Franklin - 2017 - In The Idea of Principles in Early Modern Thought Interdisciplinary Perspectives. New York, USA: Routledge. pp. 16-44.
    The leaders of the Scientific Revolution were not Baconian in temperament, in trying to build up theories from data. Their project was that same as in Aristotle's Posterior Analytics: they hoped to find necessary principles that would show why the observations must be as they are. Their use of mathematics to do so expanded the Aristotelian project beyond the qualitative methods used by Aristotle and the scholastics. In many cases they succeeded.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  36. On The Unreasonable Effectiveness of Mathematics in the Natural Sciences.Sorin Bangu - 2016 - In Emiliano Ippoliti, Fabio Sterpetti & Thomas Nickles (eds.), Models and Inferences in Science. Springer. pp. 11-29.
    I present a reconstruction of Eugene Wigner’s argument for the claim that mathematics is ‘unreasonable effective’, together with six objections to its soundness. I show that these objections are weaker than usually thought, and I sketch a new objection.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   7 citations  
  37. Mathematical Explanation and Epistemology: Please Mind the Gap.Sam Baron - 2016 - Ratio 29 (2):149-167.
    This paper draws together two strands in the debate over the existence of mathematical objects. The first strand concerns the notion of extra-mathematical explanation: the explanation of physical facts, in part, by facts about mathematical objects. The second strand concerns the access problem for platonism: the problem of how to account for knowledge of mathematical objects. I argue for the following conditional: if there are extra-mathematical explanations, then the core thesis of the access problem is false. This has implications for (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  38. Fundamentality, Effectiveness, and Objectivity of Gauge Symmetries.Aldo Filomeno - 2016 - International Studies in the Philosophy of Science 30 (1):19-37.
    Much recent philosophy of physics has investigated the process of symmetry breaking. Here, I critically assess the alleged symmetry restoration at the fundamental scale. I draw attention to the contingency that gauge symmetries exhibit, that is, the fact that they have been chosen from an infinite space of possibilities. I appeal to this feature of group theory to argue that any metaphysical account of fundamental laws that expects symmetry restoration up to the fundamental level is not fully satisfactory. This is (...)
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  39. Creating a New Mathematics.Arran Gare - 2016 - In Ronny Desmet (ed.), Intuition in Mathematics and Physics. Anoka, MN, USA: Process Century Press. pp. 146-164.
    The focus of this chapter is on efforts to create a new mathematics, with my prime interest being the role of mathematics in comprehending a world consisting first and foremost of processes, and examining what developments in mathematics are required for this. I am particularly interested in developments in mathematics able to do justice to the reality of life. Such mathematics could provide the basis for advancing ecology, human ecology and ecological economics and thereby assist in the transformation of society (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  40. Avoiding reification: Heuristic effectiveness of mathematics and the prediction of the omega minus particle.Michele Ginammi - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:20-27.
    According to Steiner (1998), in contemporary physics new important discoveries are often obtained by means of strategies which rely on purely formal mathematical considerations. In such discoveries, mathematics seems to have a peculiar and controversial role, which apparently cannot be accounted for by means of standard methodological criteria. M. Gell-Mann and Y. Ne׳eman׳s prediction of the Ω− particle is usually considered a typical example of application of this kind of strategy. According to Bangu (2008), this prediction is apparently based on (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  41. The Applicability of Mathematics and the Indispensability Arguments.Michele Ginammi - 2016 - Lato Sensu, Revue de la Société de Philosophie des Sciences 3 (1):59-68.
    In this paper I will take into examination the relevance of the main indispensability arguments for the comprehension of the applicability of mathematics. I will conclude not only that none of these indispensability arguments are of any help for understanding mathematical applicability, but also that these arguments rather require a preliminary analysis of the problems raised by the applicability of mathematics in order to avoid some tricky difficulties in their formulations. As a consequence, we cannot any longer consider the applicability (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  42. A match not made in heaven: on the applicability of mathematics in physics.Arezoo Islami - 2016 - Synthese:1-23.
    In his seminal 1960 paper, the physicist Eugene Wigner formulated the question of the applicability of mathematics in physics in a way nobody had before. This formulation has been entirely overlooked due to an exclusive concern with solving Wigner’s problem and explaining the effectiveness of mathematics in the natural sciences, in one way or another. Many have attempted to attribute Wigner’s unjustified conclusion—that mathematics is unreasonably effective in the natural sciences—to his formalist views on mathematics. My goal is to show (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  43. Applied mathematics in the world of complexity.V. P. Kazaryan - 2016 - Liberal Arts in Russia 5 (1):3.
    In modern mathematics the value of applied research increases, for this reason, modern mathematics is initially focused on resolving the situation actually arose in this respect on a par with other disciplines. Using a new tool - computer systems, applied mathematics appealed to the new object: not to nature, not to society or the practical activity of man. In fact, the subject of modern applied mathematics is a problem situation for the actor-person, and the study is aimed at solving the (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44. Divergent Mathematical Treatments in Utility Theory.Davide Rizza - 2016 - Erkenntnis 81 (6):1287-1303.
    In this paper I study how divergent mathematical treatments affect mathematical modelling, with a special focus on utility theory. In particular I examine recent work on the ranking of information states and the discounting of future utilities, in order to show how, by replacing the standard analytical treatment of the models involved with one based on the framework of Nonstandard Analysis, diametrically opposite results are obtained. In both cases, the choice between the standard and nonstandard treatment amounts to a selection (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Logic, Physics and Intuition.Peter Clark - 2015 - Philosophical Inquiry 39 (1):38-48.
    This paper is addressed to the problem of how is applied mathematics possible?
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  46. Numerical Methods, Complexity, and Epistemic Hierarchies.Nicolas Fillion & Sorin Bangu - 2015 - Philosophy of Science 82 (5):941-955.
    Modern mathematical sciences are hard to imagine without appeal to efficient computational algorithms. We address several conceptual problems arising from this interaction by outlining rival but complementary perspectives on mathematical tractability. More specifically, we articulate three alternative characterizations of the complexity hierarchy of mathematical problems that are themselves based on different understandings of computational constraints. These distinctions resolve the tension between epistemic contexts in which exact solutions can be found and the ones in which they cannot; however, contrary to a (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  47. Proof phenomenon as a function of the phenomenology of proving.Inês Hipólito - 2015 - Progress in Biophysics and Molecular Biology 119:360-367.
    Kurt Gödel wrote (1964, p. 272), after he had read Husserl, that the notion of objectivity raises a question: “the question of the objective existence of the objects of mathematical intuition (which, incidentally, is an exact replica of the question of the objective existence of the outer world)”. This “exact replica” brings to mind the close analogy Husserl saw between our intuition of essences in Wesensschau and of physical objects in perception. What is it like to experience a mathematical proving (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  48. Hysteresis model of unconscious-conscious interconnection: Exploring dynamics on m-adic trees.Giuseppe Iurato & Andrei Khrennikov - 2015 - P-Adic Numbers, Ultrametric Analysis, and Applications 7 (4):312-321.
    In this brief note, we focus attention on a possible implementation of a basic hysteretic pattern (the Preisach one), suitably generalized, into a formal model of unconscious-conscious interconnection and based on representation of mental entities by m-adic numbers.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  49. From Mathematics to Quantum Mechanics - On the Conceptual Unity of Cassirer’s Philosophy of Science.Thomas Mormann - 2015 - In Sebastian Luft & J. Tyler Friedman (eds.), The Philosophy of Ernst Cassirer: A Novel Assessment. De Gruyter. pp. 31-64.
  50. Nonstandard utilities for lexicographically decomposable orderings.Davide Rizza - 2015 - Journal of Mathematical Economics 1 (60):105-109.
    Using a basic theorem from mathematical logic, I show that there are field-extensions ofRon which a class of orderings that do not admit any real-valued utility functions can be represented by uncountably large families of utility functions. These are the lexicographically decomposable orderings studied in Beardon et al. (2002a). A corollary to this result yields an uncountably large family of very simple utility functions for the lexicographic ordering of the real Cartesian plane. I generalise these results to the lexicographic ordering (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 280