Switch to: References

Add citations

You must login to add citations.
  1. Review essay: Bohmian mechanics and the quantum revolution. [REVIEW]Sheldon Goldstein - 1996 - Synthese 107 (1):145 - 165.
  • Bohmian Mechanics and Quantum Information.Sheldon Goldstein - 2010 - Foundations of Physics 40 (4):335-355.
    Many recent results suggest that quantum theory is about information, and that quantum theory is best understood as arising from principles concerning information and information processing. At the same time, by far the simplest version of quantum mechanics, Bohmian mechanics, is concerned, not with information but with the behavior of an objective microscopic reality given by particles and their positions. What I would like to do here is to examine whether, and to what extent, the importance of information, observation, and (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Formal statement of the special principle of relativity.Marton Gomori & Laszlo E. Szabo - 2015 - Synthese 192 (7):1-24.
    While there is a longstanding discussion about the interpretation of the extended, general principle of relativity, there seems to be a consensus that the special principle of relativity is absolutely clear and unproblematic. However, a closer look at the literature on relativistic physics reveals a more confusing picture. There is a huge variety of, sometimes metaphoric, formulations of the relativity principle, and there are different, sometimes controversial, views on its actual content. The aim of this paper is to develop a (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Why you'll never know whether Roger Penrose is a computer.Clark Glymour & Kevin Kelly - 1990 - Behavioral and Brain Sciences 13 (4):666-667.
  • Pilot-Wave Quantum Theory in Discrete Space and Time and the Principle of Least Action.Janusz Gluza & Jerzy Kosek - 2016 - Foundations of Physics 46 (11):1502-1521.
    The idea of obtaining a pilot-wave quantum theory on a lattice with discrete time is presented. The motion of quantum particles is described by a \-distributed Markov chain. Stochastic matrices of the process are found by the discrete version of the least-action principle. Probability currents are the consequence of Hamilton’s principle and the stochasticity of the Markov process is minimized. As an example, stochastic motion of single particles in a double-slit experiment is examined.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • Indeterminism in Physics, Classical Chaos and Bohmian Mechanics: Are Real Numbers Really Real?Nicolas Gisin - 2019 - Erkenntnis (6):1-13.
    It is usual to identify initial conditions of classical dynamical systems with mathematical real numbers. However, almost all real numbers contain an infinite amount of information. I argue that a finite volume of space can’t contain more than a finite amount of information, hence that the mathematical real numbers are not physically relevant. Moreover, a better terminology for the so-called real numbers is “random numbers”, as their series of bits are truly random. I propose an alternative classical mechanics, which is (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Indeterminism in Physics, Classical Chaos and Bohmian Mechanics: Are Real Numbers Really Real?Nicolas Gisin - 2019 - Erkenntnis 86 (6):1469-1481.
    It is usual to identify initial conditions of classical dynamical systems with mathematical real numbers. However, almost all real numbers contain an infinite amount of information. I argue that a finite volume of space can’t contain more than a finite amount of information, hence that the mathematical real numbers are not physically relevant. Moreover, a better terminology for the so-called real numbers is “random numbers”, as their series of bits are truly random. I propose an alternative classical mechanics, which is (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Where is the material of the emperor's mind?David L. Gilden & Joseph S. Lappin - 1990 - Behavioral and Brain Sciences 13 (4):665-666.
  • Strong AI and the problem of “second-order” algorithms.Gerd Gigerenzer - 1990 - Behavioral and Brain Sciences 13 (4):663-664.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Wave-particle duality of single-photon states.Partha Ghose & Dipankar Home - 1992 - Foundations of Physics 22 (12):1435-1447.
    We review the present status of wave-particle duality of single-photon states in the context of some recent experiments. In particular, Bohr's complementarity principle is critically reexamined. It is explained in detail how this principle is confronted in these experiments and how a contradiction with the notion of “mutual exclusiveness” of classical wave and particle pictures emerges.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • The two-prism experiment and wave-particle duality of light.Partha Ghose & Dipankar Home - 1996 - Foundations of Physics 26 (7):943-953.
    A number of papers on wave-particle duality has appeared since the two-prism experiment was performed by Mizobuchi and Ohtake, based on a suggestion by Ghose, Home, and Agarwal. Against this backdrop, the present paper provides further clarification of the key issues involved in the analysis of the two-prism experiment. In the process, we present an overview of wave-particle duality vis-a vis Bohr's complementarity principle.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relativistic dynamical reduction models: General framework and examples. [REVIEW]G. C. Ghirardi, R. Grassi & P. Pearle - 1990 - Foundations of Physics 20 (11):1271-1316.
    The formulation of a relativistic theory of state-vector reduction is proposed and analyzed, and its conceptual consequences are elucidated. In particular, a detailed discussion of stochastic invariance and of local and nonlocal aspects at the level of individual systems is presented.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  • Parameter dependence and outcome dependence in dynamical models for state vector reduction.G. C. Ghirardi, R. Grassi, J. Butterfield & G. N. Fleming - 1993 - Foundations of Physics 23 (3):341-364.
    We apply the distinction between parameter independence and outcome independence to the linear and nonlinear models of a recent nonrelativistic theory of continuous state vector reduction. We show that in the nonlinear model there is a set of realizations of the stochastic process that drives the state vector reduction for which parameter independence is violated for parallel spin components in the EPR-Bohm setup. Such a set has an appreciable probability of occurrence (≈ 1/2). On the other hand, the linear model (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  • A quantum theory of consciousness.Shan Gao - 2007 - Minds and Machines 18 (1):39-52.
    The relationship between quantum collapse and consciousness is reconsidered under the assumption that quantum collapse is an objective dynamical process. We argue that the conscious observer can have a distinct role from the physical measuring device during the process of quantum collapse owing to the intrinsic nature of consciousness; the conscious observer can know whether he is in a definite state or a quantum superposition of definite states, while the physical measuring device cannot “know”. As a result, the consciousness observer (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Undecidability and the Problem of Outcomes in Quantum Measurements.Rodolfo Gambini, Luis Pedro García Pintos & Jorge Pullin - 2009 - Foundations of Physics 40 (1):93-115.
    We argue that it is fundamentally impossible to recover information about quantum superpositions when a quantum system has interacted with a sufficiently large number of degrees of freedom of the environment. This is due to the fact that gravity imposes fundamental limitations on how accurate measurements can be. This leads to the notion of undecidability: there is no way to tell, due to fundamental limitations, if a quantum system evolved unitarily or suffered wavefunction collapse. This in turn provides a solution (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Don't ask Plato about the emperor's mind.Alan Gamham - 1990 - Behavioral and Brain Sciences 13 (4):664-665.
  • Typicality vs. Probability in Trajectory-Based Formulations of Quantum Mechanics.Bruno Galvan - 2007 - Foundations of Physics 37 (11):1540-1562.
    Bohmian mechanics represents the universe as a set of paths with a probability measure defined on it. The way in which a mathematical model of this kind can explain the observed phenomena of the universe is examined in general. It is shown that the explanation does not make use of the full probability measure, but rather of a suitable set function deriving from it, which defines relative typicality between single-time cylinder sets. Such a set function can also be derived directly (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Re-thinking local causality.Simon Friederich - 2015 - Synthese 192 (1):221-240.
    There is widespread belief in a tension between quantum theory and special relativity, motivated by the idea that quantum theory violates J. S. Bell’s criterion of local causality, which is meant to implement the causal structure of relativistic space-time. This paper argues that if one takes the essential intuitive idea behind local causality to be that probabilities in a locally causal theory depend only on what occurs in the backward light cone and if one regards objective probability as what imposes (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the property structure of realist collapse interpretations of quantum mechanics and the so-called "counting anomaly".Roman Frigg - 2003 - International Studies in the Philosophy of Science 17 (1):43 – 57.
    The aim of this article is twofold. Recently, Lewis has presented an argument, now known as the "counting anomaly", that the spontaneous localization approach to quantum mechanics, suggested by Ghirardi, Rimini, and Weber, implies that arithmetic does not apply to ordinary macroscopic objects. I will take this argument as the starting point for a discussion of the property structure of realist collapse interpretations of quantum mechanics in general. At the end of this I present a proof of the fact that (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Rigid Body Motion in Special Relativity.Jerrold Franklin - 2013 - Foundations of Physics 43 (12):1489-1501.
    We study the acceleration and collisions of rigid bodies in special relativity. After a brief historical review, we give a physical definition of the term ‘rigid body’ in relativistic straight line motion. We show that the definition of ‘rigid body’ in relativity differs from the usual classical definition, so there is no difficulty in dealing with rigid bodies in relativistic motion. We then describe The motion of a rigid body undergoing constant acceleration to a given velocity.The acceleration of a rigid (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantities in quantum mechanics.John Forge - 2000 - International Studies in the Philosophy of Science 14 (1):43 – 56.
    The problem of the failure of value definiteness (VD) for the idea of quantity in quantum mechanics is stated, and what VD is and how it fails is explained. An account of quantity, called BP, is outlined and used as a basis for discussing the problem. Several proposals are canvassed in view of, respectively, Forrest's indeterminate particle speculation, the "standard" interpretation of quantum mechanics and Bub's modal interpretation.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • The relevance of the preparation concept for the interpretation of quantum formalism.Miguel Ferrero, Victor Gómez-Pin & José Luís Sánchez-Gómez - 2014 - Epistemologia 37 (1):134-151.
  • Quantum optical predictions inQ representation for Bell's type experiments.Miguel Ferrero & T. W. Marshall - 1991 - Foundations of Physics 21 (11):1315-1321.
    Using the Q representation, we study the disagreement between quantum optical formalism and local realism and we show that the phenomenon of enhancement, first revealed by the local realist analysis, could receive a simple explanation if we use this particular version of the quantum formalism. Nevertheless, some fundamental difficulties remain.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Empirical consequences of the scientific construction: The program of local hidden-variables theories in quantum mechanics. [REVIEW]Miguel Ferrero & Emilio Santos - 1997 - Foundations of Physics 27 (6):765-800.
    We claim that physics has been constructed because three “philosophical” principles have been respected, namely, realism, locality, and consistency. These principles lead to an interpretation of quantum mechanics (QM) in terms of local hidden-variables theories (LHV). In order to prove that LHV have not been refuted, we analyze the empirical proofs of Bell's inequalities and we argue that none is loophole-free. Then we propose a restricted QM that does not contain measurement postulates and that does not claim that all state (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Coming From Material Reality.Miguel Ferrero & J. L. Sánchez-Gómez - 2015 - Foundations of Science 20 (2):199-212.
    In a previous essay we demonstrated that quantum mechanical formalism is incompatible with some necessary principles of the mechanism conception still dominant in the physicist’s community. In this paper we show, based on recent empirical evidence in quantum physics, the inevitability of abandoning the old mechanism conception and to construct a new one in which physical reality is seen as a representation which refers to relations established through operations made by us in a world that we are determining. This change (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Further Review of the Incompatibility between Classical Principles and Quantum Postulates.M. Ferrero, V. Gómez Pin, D. Salgado & J. L. Sánchez-Gómez - 2013 - Foundations of Science 18 (1):125-138.
    The traditional “realist” conception of physics, according to which human concepts, laws and theories can grasp the essence of a reality in our absence , seems incompatible with quantum formalism and it most fruitful interpretation. The proof rests on the violation by quantum mechanical formalism of some fundamental principles of the classical ontology. We discuss if the conception behind Einstein’s idea of a reality in our absence, could be still maintained and at which price. We conclude that quantum mechanical formalism (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Manifestly Covariant Quantum Theory with Invariant Evolution Parameter in Relativistic Dynamics.John R. Fanchi - 2011 - Foundations of Physics 41 (1):4-32.
    Manifestly covariant quantum theory with invariant evolution parameter is a parametrized relativistic dynamical theory. The study of parameterized relativistic dynamics (PRD) helps us understand the consequences of changing key assumptions of quantum field theory (QFT). QFT has been very successful at explaining physical observations and is the basis of the conventional paradigm, which includes the Standard Model of electroweak and strong interactions. Despite its record of success, some phenomena are anomalies that may require a modification of the Standard Model. The (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ψ-epistemic quantum cosmology?Peter W. Evans, Sean Gryb & Karim P. Y. Thébault - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 56:1-12.
    This paper provides a prospectus for a new way of thinking about the wavefunction of the universe: a Ψ-epistemic quantum cosmology. We present a proposal that, if successfully implemented, would resolve the cosmological measurement problem and simultaneously allow us to think sensibly about probability and evolution in quantum cosmology. Our analysis draws upon recent work on the problem of time in quantum gravity and causally symmet- ric local hidden variable theories. Our conclusion weighs the strengths and weaknesses of the approach (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark  
  • Ontic structural realism and the interpretation of quantum mechanics.Michael Esfeld - 2013 - European Journal for Philosophy of Science 3 (1):19-32.
    This paper argues that ontic structural realism (OSR) faces a dilemma: either it remains on the general level of realism with respect to the structure of a given theory, but then it is, like epistemic structural realism, only a partial realism; or it is a complete realism, but then it has to answer the question how the structure of a given theory is implemented, instantiated or realized and thus has to argue for a particular interpretation of the theory in question. (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  • Physics and Intrinsic Properties.Michael Esfeld - 2013 - In Robert M. Francescotti (ed.), Companion to Intrinsic Properties. De Gruyter. pp. 253-270.
    The paper sketches out an ontology of physics in terms of matter being primitive stuff distributed in space and all the properties physics is committed to being dispositions that fix the temporal development of the distribution of matter in space. Whereas such properties can be conceived as intrinsic properties of particles in classical mechanics, in quantum physics, there is a holistic property or structure that relates all matter and that fixes its temporal development.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • The GRW Flash Theory: A Relativistic Quantum Ontology of Matter in Space-Time?Michael Esfeld & Nicolas Gisin - 2014 - Philosophy of Science 81 (2):248-264.
    John Bell proposed an ontology for the GRW modification of quantum mechanics in terms of flashes occurring at space- time points. This article spells out the motivation for this ontology, inquires into the status of the wave function in it, critically examines the claim of its being Lorentz invariant, and considers whether it is a parsimonious but nevertheless physically adequate ontology.
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  • The Ontology of Bohmian Mechanics.M. Esfeld, D. Lazarovici, Mario Hubert & D. Durr - 2014 - British Journal for the Philosophy of Science 65 (4):773-796.
    The paper points out that the modern formulation of Bohm’s quantum theory known as Bohmian mechanics is committed only to particles’ positions and a law of motion. We explain how this view can avoid the open questions that the traditional view faces according to which Bohm’s theory is committed to a wave-function that is a physical entity over and above the particles, although it is defined on configuration space instead of three-dimensional space. We then enquire into the status of the (...)
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   85 citations  
  • The Physics and Metaphysics of Primitive Stuff.Michael Esfeld, Dustin Lazarovici, Vincent Lam & Mario Hubert - 2017 - British Journal for the Philosophy of Science 68 (1):133-61.
    The article sets out a primitive ontology of the natural world in terms of primitive stuff—that is, stuff that has as such no physical properties at all—but that is not a bare substratum either, being individuated by metrical relations. We focus on quantum physics and employ identity-based Bohmian mechanics to illustrate this view, but point out that it applies all over physics. Properties then enter into the picture exclusively through the role that they play for the dynamics of the primitive (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   41 citations  
  • The primitive ontology of quantum physics: Guidelines for an assessment of the proposals.Michael Esfeld - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 47:99-106.
    The paper seeks to make progress from stating primitive ontology theories of quantum physics – notably Bohmian mechanics, the GRW matter density theory and the GRW flash theory – to assessing these theories. Four criteria are set out: internal coherence; empirical adequacy; relationship to other theories; explanatory value. The paper argues that the stock objections against these theories do not withstand scrutiny. Its focus then is on their explanatory value: they pursue different strategies to ground the textbook formalism of quantum (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  • Against the disappearance of spacetime in quantum gravity.Michael Esfeld - 2019 - Synthese 199 (2):355-369.
    This paper argues against the proposal to draw from current research into a physical theory of quantum gravity the ontological conclusion that spacetime or spatiotemporal relations are not fundamental. As things stand, the status of this proposal is like the one of all the other claims about radical changes in ontology that were made during the development of quantum mechanics and quantum field theory. However, none of these claims held up to scrutiny as a consequence of the physics once the (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Bell’s Theorem and the Issue of Determinism and Indeterminism.Michael Esfeld - 2015 - Foundations of Physics 45 (5):471-482.
    The paper considers the claim that quantum theories with a deterministic dynamics of objects in ordinary space-time, such as Bohmian mechanics, contradict the assumption that the measurement settings can be freely chosen in the EPR experiment. That assumption is one of the premises of Bell’s theorem. I first argue that only a premise to the effect that what determines the choice of the measurement settings is independent of what determines the past state of the measured system is needed for the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • How to account for quantum non-locality: ontic structural realism and the primitive ontology of quantum physics.Michael Esfeld - 2017 - Synthese 194 (7):2329-2344.
    The paper has two aims: (1) it sets out to show that it is well motivated to seek for an account of quantum non-locality in the framework of ontic structural realism (OSR), which integrates the notions of holism and non-separability that have been employed since the 1980s to achieve such an account. However, recent research shows that OSR on its own cannot provide such an account. Against this background, the paper argues that by applying OSR to the primitive ontology theories (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Quantum correlations and the explanatory power of radical metaphysical hypotheses.Nina Emery - 2022 - Philosophical Studies 179 (7):2391-2414.
    I argue that, in at least one important sense, the hypothesis that you are a brain in a vat provides better explanations than the explanations provided by standard ways of interpreting our best scientific theories. This puts pressure on anyone who—like me!—wishes to resist taking this radical hypothesis seriously when doing science and scientifically-informed metaphysics. Insofar as our resistance is justified, it can’t be justified simply by claiming that the brain in a vast hypothesis is explanatorily impoverished.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Non-local common cause explanations for EPR.Matthias Egg & Michael Esfeld - 2014 - European Journal for Philosophy of Science 4 (2):181-196.
    The paper argues that a causal explanation of the correlated outcomes of EPR-type experiments is desirable and possible. It shows how Bohmian mechanics and the GRW mass density theory offer such an explanation in terms of a non-local common cause.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Primitive ontology and quantum state in the GRW matter density theory.Matthias Egg & Michael Esfeld - 2015 - Synthese 192 (10):3229-3245.
    The paper explains in what sense the GRW matter density theory is a primitive ontology theory of quantum mechanics and why, thus conceived, the standard objections against the GRW formalism do not apply to GRWm. We consider the different options for conceiving the quantum state in GRWm and argue that dispositionalism is the most attractive one.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  • Essay Review of Tanya and Jeffrey Bub’s Totally Random: Why Nobody Understands Quantum Mechanics: A Serious Comic on Entanglement: Princeton and Oxford: Princeton University Press (2018), ISBN: 9780691176956, 272 pp., £18.99 / $22.95. [REVIEW]Michael E. Cuffaro & Emerson P. Doyle - 2021 - Foundations of Physics 51 (1):1-16.
    This is an extended essay review of Tanya and Jeffrey Bub’s Totally Random: Why Nobody Understands Quantum Mechanics: A serious comic on entanglement. We review the philosophical aspects of the book, provide suggestions for instructors on how to use the book in a class setting, and evaluate the authors’ artistic choices in the context of comics theory. Although Totally Random does not defend any particular interpretation of quantum mechanics, we find that, in its mode of presentation, Totally Random is a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Physics of brain-mind interaction.John C. Eccles - 1990 - Behavioral and Brain Sciences 13 (4):662-663.
  • Computations over abstract categories of representation.Roy Eagleson - 1990 - Behavioral and Brain Sciences 13 (4):661-662.
  • Anthropomorphic Quantum Darwinism as an Explanation for Classicality.Thomas Durt - 2010 - Foundations of Science 15 (2):177-197.
    According to Zurek, the emergence of a classical world from a quantum substrate could result from a long selection process that privileges the classical bases according to a principle of optimal information. We investigate the consequences of this principle in a simple case, when the system and the environment are two interacting scalar particles supposedly in a pure state. We show that then the classical regime corresponds to a situation for which the entanglement between the particles (the system and the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Quantum physics without quantum philosophy.Detlef Dürr, Sheldon Goldstein & Nino Zanghì - 1995 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 26 (2):137-149.
  • Quantum physics without quantum philosophy.Detlef Dürr, Sheldon Goldstein & Nino Zanghì - 1995 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 26 (2):137-149.
    Quantum philosophy, a peculiar twentieth-century malady, is responsible for most of the conceptual muddle plaguing the foundations of quantum physics. When this philosophy is eschewed, one naturally arrives at Bohmian mechanics, which is what emerges from Schrodinger's equation for a nonrelativistic system of particles when we merely insist that 'particles' means particles. While distinctly non-Newtonian, Bohmian mechanics is a fully deterministic theory of particles in motion, a motion choreographed by the wave function. The quantum formalism emerges when measurement situations are (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   79 citations  
  • A global equilibrium as the foundation of quantum randomness.Detlef Dürr, Sheldon Goldstein & Nino Zanghí - 1993 - Foundations of Physics 23 (5):721-738.
    We analyze the origin of quantum randomness within the framework of a completely deterministic theory of particle motion—Bohmian mechanics. We show that a universe governed by this mechanics evolves in such a way as to give rise to the appearance of randomness, with empirical distributions in agreement with the predictions of the quantum formalism. Crucial ingredients in our analysis are the concept of the effective wave function of a subsystem and that of a random system. The latter is a notion (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Lorentz-Invariant, Retrocausal, and Deterministic Hidden Variables.Aurélien Drezet - 2019 - Foundations of Physics 49 (10):1166-1199.
    We review several no-go theorems attributed to Gisin and Hardy, Conway and Kochen purporting the impossibility of Lorentz-invariant deterministic hidden-variable model for explaining quantum nonlocality. Those theorems claim that the only known solution to escape the conclusions is either to accept a preferred reference frame or to abandon the hidden-variable program altogether. Here we present a different alternative based on a foliation dependent framework adapted to deterministic hidden variables. We analyse the impact of such an approach on Bohmian mechanics and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Perceptive questions about computation and cognition.Jon Doyle - 1990 - Behavioral and Brain Sciences 13 (4):661-661.
  • Copenhagen Quantum Mechanics Emerges from a Deterministic Schrödinger Theory in 11 Dimensional Spacetime Including Weak Field Gravitation.G. Doyen & D. Drakova - 2015 - Foundations of Physics 45 (8):959-999.
    We construct a world model consisting of a matter field living in 4 dimensional spacetime and a gravitational field living in 11 dimensional spacetime. The seven hidden dimensions are compactified within a radius estimated by reproducing the particle–wave characteristics of diffraction experiments. In the presence of matter fields the gravitational field develops localized modes with elementary excitations called gravonons which are induced by the sources. The final world model treated here contains only gravonons and a scalar matter field. The gravonons (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark