Switch to: References

Add citations

You must login to add citations.
  1. A Puzzle concerning Compositionality in Machines.Ryan M. Nefdt - 2020 - Minds and Machines 30 (1):47-75.
    This paper attempts to describe and address a specific puzzle related to compositionality in artificial networks such as Deep Neural Networks and machine learning in general. The puzzle identified here touches on a larger debate in Artificial Intelligence related to epistemic opacity but specifically focuses on computational applications of human level linguistic abilities or properties and a special difficulty with relation to these. Thus, the resulting issue is both general and unique. A partial solution is suggested.
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • On Predicting Recidivism: Epistemic Risk, Tradeoffs, and Values in Machine Learning.Justin B. Biddle - forthcoming - Canadian Journal of Philosophy:1-21.
    Recent scholarship in philosophy of science and technology has shown that scientific and technological decision making are laden with values, including values of a social, political, and/or ethical character. This paper examines the role of value judgments in the design of machine-learning systems generally and in recidivism-prediction algorithms specifically. Drawing on work on inductive and epistemic risk, the paper argues that ML systems are value laden in ways similar to human decision making, because the development and design of ML systems (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Why Attention is Not Explanation: Surgical Intervention and Causal Reasoning About Neural Models.Christopher Grimsley, Elijah Mayfield & Julia Bursten - 2020 - Proceedings of the 12th Conference on Language Resources and Evaluation.
    As the demand for explainable deep learning grows in the evaluation of language technologies, the value of a principled grounding for those explanations grows as well. Here we study the state-of-the-art in explanation for neural models for natural-language processing (NLP) tasks from the viewpoint of philosophy of science. We focus on recent evaluation work that finds brittleness in explanations obtained through attention mechanisms.We harness philosophical accounts of explanation to suggest broader conclusions from these studies. From this analysis, we assert the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark