Switch to: References

Citations of:

Poincaré against the logicians

Synthese 90 (3):349 - 378 (1992)

Add citations

You must login to add citations.
  1. Towards a Theory of Mathematical Argument.Ian J. Dove - 2009 - Foundations of Science 14 (1-2):136-152.
    In this paper, I assume, perhaps controversially, that translation into a language of formal logic is not the method by which mathematicians assess mathematical reasoning. Instead, I argue that the actual practice of analyzing, evaluating and critiquing mathematical reasoning resembles, and perhaps equates with, the practice of informal logic or argumentation theory. It doesn’t matter whether the reasoning is a full-fledged mathematical proof or merely some non-deductive mathematical justification: in either case, the methodology of assessment overlaps to a large extent (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Constructive Type Theory and the Dialogical Approach to Meaning.Shahid Rahman & Nicolas Clerbout - 2013 - The Baltic International Yearbook of Cognition, Logic and Communication 8 (1).
    In its origins Dialogical logic constituted one part of a new movement called the Erlangen School or Erlangen Constructivism. Its goal was to provide a new start to a general theory of language and of science. According to the Erlangen-School, language is not just a fact that we discover, but a human cultural accomplishment whose construction reason can and should control. The resulting project of intentionally constructing a scientific language was called the Orthosprache-project. Unfortunately, the Orthosprache-project was not further developed (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Poincaré: Mathematics & Logic & Intuition.Colin Mclarty - 1997 - Philosophia Mathematica 5 (2):97-115.
    often insisted existence in mathematics means logical consistency, and formal logic is the sole guarantor of rigor. The paper joins this to his view of intuition and his own mathematics. It looks at predicativity and the infinite, Poincaré's early endorsement of the axiom of choice, and Cantor's set theory versus Zermelo's axioms. Poincaré discussed constructivism sympathetically only once, a few months before his death, and conspicuously avoided committing himself. We end with Poincaré on Couturat, Russell, and Hilbert.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Louis Joly as a Platonist Painter?Roger Pouivet - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics. Springer. pp. 337--341.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • An Inferential Community: Poincaré’s Mathematicians.Michel Dufour & John Woods - 2011 - In Frank Zenker (ed.), Proceedings of the 9th International Conference of the Ontario Society for the Study of Argumentation (OSSA), May 18-21, 2011. Windsor, Canada: pp. 156-166.
    Inferential communities are communities using specific substantial argumentative schemes. The religious or scientific communities are examples. I discuss the status of the mathematical community as it appears through the position held by the French mathematician Henri Poincaré during his famous ar-guments with Russell, Hilbert, Peano and Cantor. The paper focuses on the status of complete induction and how logic and psychology shape the community of mathematicians and the teaching of mathematics.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Definitions And Contradictions. Russell, Poincaré, And Lesniewski.François Lepage - 2008 - The Baltic International Yearbook of Cognition, Logic and Communication 4.
    This paper is composed of two independent parts. The first is concerned with Russell’s early philosophy of mathematics and his quarrel with Poincaré about the nature of their opposition. I argue that the main divergence between the two philosophers was about the nature of definitions. In the second part, I briefly present Le!niewski’s Ontology and suggest that Le!niewski’s original treatment of definitions in the foundations of mathematics is the natural solution to the problem that divided Russell and Poincaré.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Poincaréan Intuition Revisited: What Can We Learn From Kant and Parsons?Margaret MacDougall - 2010 - Studies in History and Philosophy of Science Part A 41 (2):138-147.
    This paper provides a comprehensive critique of Poincaré’s usage of the term intuition in his defence of the foundations of pure mathematics and science. Kant’s notions of sensibility and a priori form and Parsons’s theory of quasi-concrete objects are used to impute rigour into Poincaré’s interpretation of intuition. In turn, Poincaré’s portrayal of sensible intuition as a special kind of intuition that tolerates the senses and imagination is rejected. In its place, a more harmonized account of how we perceive concrete (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Mathematical Inference and Logical Inference.Yacin Hamami - 2018 - Review of Symbolic Logic 11 (4):665-704.
    The deviation of mathematical proof—proof in mathematical practice—from the ideal of formal proof—proof in formal logic—has led many philosophers of mathematics to reconsider the commonly accepted view according to which the notion of formal proof provides an accurate descriptive account of mathematical proof. This, in turn, has motivated a search for alternative accounts of mathematical proof purporting to be more faithful to the reality of mathematical practice. Yet, in order to develop and evaluate such alternative accounts, it appears as a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Carroll’s Infinite Regress and the Act of Diagramming.John Mumma - forthcoming - Topoi:1-8.
    The infinite regress of Carroll’s ‘What the Tortoise said to Achilles’ is interpreted as a problem in the epistemology of mathematical proof. An approach to the problem that is both diagrammatic and non-logical is presented with respect to a specific inference of elementary geometry.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Towards a Theory of Mathematical Argument.Ian J. Dove - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), Foundations of Science. Springer. pp. 291--308.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations