Citations of:
Add citations
You must login to add citations.
|
|
We investigate the notion of definability with respect to a full satisfaction class σ for a model M of Peano arithmetic. It is shown that the σ-definable subsets of M always include a class which provides a satisfaction definition for standard formulas. Such a class is necessarily proper, therefore there exist recursively saturated models with no full satisfaction classes. Nonstandard extensions of overspill and recursive saturation are utilized in developing a criterion for nonstandard definability. Finally, these techniques yield some information (...) |
|
|
|
A model M of PA has the omega-property if it has a subset of order type omega that is coded in an elementary end extension of M. All countable recursively saturated models have the omega-property, but there are also models with the omega-property that are not recursively saturated. The papers is devoted to the study of structural properties of such models. |
|
|
|
|
|
|