Citations of work:

Bahareh Afshari & Michael Rathjen (2009). Reverse Mathematics and Well-Ordering Principles: A Pilot Study.

Order:
Are we missing citations?

PhilPapers citations & references are currently in beta testing. We expect to add many more in the future.

Meanwhile, you can use our bibliography tool to import references for this or another work.

Or you can directly add citations for the above work:

Search for work by author name and title
Add directly by record ID

  1.  4
    Derivatives of Normal Functions and $$\Omega $$ Ω -Models.Toshiyasu Arai - 2018 - Archive for Mathematical Logic 57 (5-6):649-664.
    In this note the well-ordering principle for the derivative \ of normal functions \ on ordinals is shown to be equivalent to the existence of arbitrarily large countable coded \-models of the well-ordering principle for the function \.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2.  6
    The Veblen Functions for Computability Theorists.Alberto Marcone & Antonio Montalbán - 2011 - Journal of Symbolic Logic 76 (2):575 - 602.
    We study the computability-theoretic complexity and proof-theoretic strength of the following statements: (1) "If X is a well-ordering, then so is ε X ", and (2) "If X is a well-ordering, then so is φ(α, X)", where α is a fixed computable ordinal and φ represents the two-placed Veblen function. For the former statement, we show that ω iterations of the Turing jump are necessary in the proof and that the statement is equivalent to ${\mathrm{A}\mathrm{C}\mathrm{A}}_{0}^{+}$ over RCA₀. To prove the (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  60
    Reverse Mathematics: The Playground of Logic.Richard A. Shore - 2010 - Bulletin of Symbolic Logic 16 (3):378-402.
    This paper is essentially the author's Gödel Lecture at the ASL Logic Colloquium '09 in Sofia extended and supplemented by material from some other papers. After a brief description of traditional reverse mathematics, a computational approach to is presented. There are then discussions of some interactions between reverse mathematics and the major branches of mathematical logic in terms of the techniques they supply as well as theorems for analysis. The emphasis here is on ones that lie outside the usual main (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   4 citations