Switch to: References

Add citations

You must login to add citations.
  1. Homogenizable Structures and Model Completeness.Ove Ahlman - 2016 - Archive for Mathematical Logic 55 (7-8):977-995.
    A homogenizable structure M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} is a structure where we may add a finite number of new relational symbols to represent some ∅-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\emptyset-$$\end{document}definable relations in order to make the structure homogeneous. In this article we will divide the homogenizable structures into different classes which categorize many known examples and show what makes each class important. We will show that model completeness is vital (...)
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations