In the paper we study the method of Socratic proofs in the intuitionistic propositional logic as a reduction procedure. Our approach consists in constructing for a given sequent α a finite tree of sets of sequents by using invertible reduction rules of the kind: ? is valid if and only if ?1 is valid or... or ?n is valid. From such a tree either a Gentzen-style proof of α or an Aristotle-style refutation of α can also be extracted.