Citations of:
Add citations
You must login to add citations.
|
|
Extra-mathematical explanations explain natural phenomena primarily by appeal to mathematical facts. Philosophers disagree about whether there are extra-mathematical explanations, the correct account of them if they exist, and their implications (e.g., for the philosophy of scientific explanation and for the metaphysics of mathematics) (Baker 2005, 2009; Bangu 2008; Colyvan 1998; Craver and Povich 2017; Lange 2013, 2016, 2018; Mancosu 2008; Povich 2019, 2020; Steiner 1978). In this discussion note, I present three desiderata for any account of extra-mathematical explanation and argue (...) |
|
ABSTRACT Our goal in this paper is to extend counterfactual accounts of scientific explanation to mathematics. Our focus, in particular, is on intra-mathematical explanations: explanations of one mathematical fact in terms of another. We offer a basic counterfactual theory of intra-mathematical explanations, before modelling the explanatory structure of a test case using counterfactual machinery. We finish by considering the application of counterpossibles to mathematical explanation, and explore a second test case along these lines. |
|
Some scientific explanations appear to turn on pure mathematical claims. The enhanced indispensability argument appeals to these ‘mathematical explanations’ in support of mathematical platonism. I argue that the success of this argument rests on the claim that mathematical explanations locate pure mathematical facts on which their physical explananda depend, and that any account of mathematical explanation that supports this claim fails to provide an adequate understanding of mathematical explanation. No categories |
|
Mathematics appears to play an explanatory role in science. This, in turn, is thought to pave a way toward mathematical Platonism. A central challenge for mathematical Platonists, however, is to provide an account of how mathematical explanations work. I propose a property-based account: physical systems possess mathematical properties, which either guarantee the presence of other mathematical properties and, by extension, the physical states that possess them; or rule out other mathematical properties, and their associated physical states. I explain why Platonists (...) |
|
Mathematics clearly plays an important role in scientific explanation. Debate continues, however, over the kind of role that mathematics plays. I argue that if pure mathematical explananda and physical explananda are unified under a common explanation within science, then we have good reason to believe that mathematics is explanatory in its own right. The argument motivates the search for a new kind of scientific case study, a case in which pure mathematical facts and physical facts are explanatorily unified. I argue (...) |
|
Some scientific explanations appear to turn on pure mathematical claims. The enhanced indispensability argument appeals to these ‘mathematical explanations’ in support of mathematical platonism. I argue that the success of this argument rests on the claim that mathematical explanations locate pure mathematical facts on which their physical explananda depend, and that any account of mathematical explanation that supports this claim fails to provide an adequate understanding of mathematical explanation. |
|
This paper provides a sorely-needed evaluation of the view that mathematical explanations in science explain by unifying. Illustrating with some novel examples, I argue that the view is misguided. For believers in mathematical explanations in science, my discussion rules out one way of spelling out how they work, bringing us one step closer to the right way. For non-believers, it contributes to a divide-and-conquer strategy for showing that there are no such explanations in science. My discussion also undermines the appeal (...) No categories |
|
Recently, there have been several attempts to generalize the counterfactual theory of causal explanations to mathematical explanations. The central idea of these attempts is to use conditionals whose antecedents express a mathematical impossibility. Such countermathematical conditionals are plugged into the explanatory scheme of the counterfactual theory and -- so is the hope -- capture mathematical explanations. Here, I dash the hope that countermathematical explanations simply parallel counterfactual explanations. In particular, I show that explanations based on countermathematicals are susceptible to three (...) |
|
According to an increasingly popular view among philosophers of science, both causal and non-causal explanations can be accounted for by a single theory: the counterfactual theory of explanation. A kind of non-causal explanation that has gained much attention recently but that this theory seems unable to account for are grounding explanations. Reutlinger :239-256, 2017) has argued that, despite these appearances to the contrary, such explanations are covered by his version of the counterfactual theory. His idea is supported by recent work (...) |