Switch to: References

Citations of:

Typed lambda calculus

In Jon Barwise & H. Jerome Keisler (eds.), Handbook of Mathematical Logic. North-Holland Pub. Co.. pp. 1091--1132 (1977)

Add citations

You must login to add citations.
  1. Numeration Models of Λ‐Calculus.Akira Kanda - 1985 - Mathematical Logic Quarterly 31 (14‐18):209-220.
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Classes of Numeration Models of Λ‐Calculus.Akira Kanda - 1986 - Mathematical Logic Quarterly 32 (19‐24):315-322.
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Numeration Models of Λ-Calculus.Akira Kanda - 1985 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 31 (14-18):209-220.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Classes of Numeration Models of Λ-Calculus.Akira Kanda - 1986 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 32 (19-24):315-322.
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Degrees of Sensible Lambda Theories.Henk Barendregt, Jan Bergstra, Jan Willem Klop & Henri Volken - 1978 - Journal of Symbolic Logic 43 (1):45-55.
    A λ-theory T is a consistent set of equations between λ-terms closed under derivability. The degree of T is the degree of the set of Godel numbers of its elements. H is the $\lamda$ -theory axiomatized by the set {M = N ∣ M, N unsolvable. A $\lamda$ -theory is sensible $\operatorname{iff} T \supset \mathscr{H}$ , for a motivation see [6] and [4]. In § it is proved that the theory H is ∑ 0 2 -complete. We present Wadsworth's proof (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark