Citations of:
Add citations
You must login to add citations.
|
|
This article demonstrates that non-mechanistic, dynamical explanations are a viable approach to explanation in the special sciences. The claim that dynamical models can be explanatory without reference to mechanisms has previously been met with three lines of criticism from mechanists: the causal relevance concern, the genuine laws concern, and the charge of predictivism. I argue, however, that these mechanist criticisms fail to defeat non-mechanistic, dynamical explanation. Using the examples of Haken et al.’s model of bimanual coordination, and Thelen et al.’s (...) |
|
|
|
|
|
This metatheoretical paper investigates mind wandering from the perspective of philosophy of mind. It has two central claims. The first is that, on a conceptual level, mind wandering can be fruitfully described as a specific form of mental autonomy loss. The second is that, given empirical constraints, most of what we call “conscious thought” is better analyzed as a subpersonal process that more often than not lacks crucial properties traditionally taken to be the hallmark of personal-level cognition - such as (...) |
|
|
|
|
|
To accept that cognition is embodied is to question many of the beliefs traditionally held by cognitive scientists. One key question regards the localization of cognitive faculties. Here we argue that for cognition to be embodied and sometimes embedded, means that the cognitive faculty cannot be localized in a brain area alone. We review recent research on neural reuse, the 1/f structure of human activity, tool use, group cognition, and social coordination dynamics that we believe demonstrates how the boundary between (...) |
|
|
|
The finding of fractal scaling (FS) in behavioral sequences has raised a debate on whether FS is a pervasive property of the cognitive system or is the result of specific processes. Inferences about the origins of properties in time sequences are causal. That is, as opposed to correlational inferences reflecting instantaneous symmetrical relations, causal inferences concern asymmetric relations lagged in time. Here, I integrate Granger-causality with inferences about FS. Four simulations illustrate that causal analyses can isolate distinct FS sources, whereas (...) |
|
Phillips & Silverstein offer an exciting synthesis of ongoing efforts to link the clinical and cognitive manifestations of schizophrenia with cellular accounts of its pathophysiology. We applaud their efforts but wonder whether the highly inclusive notion of “context” adequately captures some important details regarding schizophrenia and NMDA/glutamate function that are suggested by work on language processing and cognitive electrophysiology. |
|
The claim that the disorganized subtype of schizophrenia results from glutamate hypofunction is enhanced by consideration of current subtypology of schizophrenia, symptom definition, interdependence of neurotransmitters, and the nature of the data needed to support the hypothesis. Careful specification clarifies the clinical reality of disorganization as a feature of schizophrenia and increases the utility of the subtype. |
|
Phillips & Silverstein emphasize the gain-control properties of NMDA synapses in cognitive coordination. We endorse their view and suggest that NMDA synapses play a crucial role in biased attentional competition and (visual) working memory. Our simulations show that NMDA synapses can control the storage rate of visual objects. We discuss specific predictions of our model about cognitive effects of NMDA-antagonists and schizophrenia. |
|
To understand schizophrenia, a linking hypothesis is needed that shows how brain mechanisms lead to behavioral functions in normals, and also how breakdowns in these mechanisms lead to behavioral symptoms of schizophrenia. Such a linking hypothesis is now available that complements the discussion offered by Phillips & Silverstein (P&S). |
|
The aim of this paper is to demonstrate that the postulation of irreducible, distributed cognitive systems is necessary for the successful explanatory practice of cognitive science and sociology. Towards this end, and with an eye specifically on the phenomenon of distributed cognition, the debate over reductionism versus emergence is examined from the perspective of Dynamical Systems Theory. The motivation for this novel approach is threefold. Firstly, DST is particularly popular amongst cognitive scientists who work on modelling collective behaviors. Secondly, DST (...) |
|
|
|
|
|
|
|
Neural Darwinism (ND) is a large scale selectionist theory of brain development and function that has been hypothesized to relate to consciousness. According to ND, consciousness is entailed by reentrant interactions among neuronal populations in the thalamocortical system (the ‘dynamic core’). These interactions, which permit high-order discriminations among possible core states, confer selective advantages on organisms possessing them by linking current perceptual events to a past history of value-dependent learning. Here, we assess the consistency of ND with 16 widely recognized (...) |
|
|
|
Based on the theoretical analysis of self-consciousness concepts, we hypothesized that the spatio-temporal pattern of functional connectivity within the default-mode network (DMN) should persist unchanged across a variety of different cognitive tasks or acts, thus being task-unrelated. This supposition is in contrast with current understanding that DMN activated when the subjects are resting and deactivated during any attention-demanding cognitive tasks. To test our proposal, we used, in retrospect, the results from our two early studies ([Fingelkurts, 1998] and [Fingelkurts et al., (...) |
|
|
|
|
|
This article provides a retrospective, current and prospective overview on developments in brain research and neuroscience. Both theoretical and empirical studies are considered, with emphasis in the concept of multivariability and metastability in the brain. In this new view on the human brain, the potential multivariability of the neuronal networks appears to be far from continuous in time, but confined by the dynamics of short-term local and global metastable brain states. The article closes by suggesting some of the implications of (...) |
|
We provide a taxonomy of the two most important debates in the philosophy of the cognitive and neural sciences. The first debate is over methodological individualism: is the object of the cognitive and neural sciences the brain, the whole animal, or the animal--environment system? The second is over explanatory style: should explanation in cognitive and neural science be reductionist-mechanistic, inter-level mechanistic, or dynamical? After setting out the debates, we discuss the ways in which they are interconnected. Finally, we make some (...) |
|
The concept of locally specialized functions dominates research on higher brain function and its disorders. Locally specialized functions must be complemented by processes that coordinate those functions, however, and impairment of coordinating processes may be central to some psychotic conditions. Evidence for processes that coordinate activity is provided by neurobiological and psychological studies of contextual disambiguation and dynamic grouping. Mechanisms by which this important class of cognitive functions could be achieved include those long-range connections within and between cortical regions that (...) |
|
Although interesting, the hypotheses proposed by Phillips & Silverstein lack unifying structure both in specific mechanisms and in cited evidence. They provide little to support the notion that low-level sensory processing and high-level cognitive coordination share dynamic grouping by synchrony as a common processing mechanism. We suggest that more realistic large-scale modeling at multiple levels is needed to address these issues. |
|
La resonancia magnética funcional es una de las técnicas de neuroimagen más difundidas en las neurociencias cognitivas. Su influencia tuvo un rol central en la configuración del aspecto experimental de este campo. Frente a esto, consideramos que su estatus como evidencia no ha sido suficientemente discutido en la literatura filosófica. En este trabajo nos centramos sobre este punto abordando el problema clásico de definir el alcance que puede tener la estrategia localizacionista en neurociencias. Atendemos al modo en que este problema (...) No categories |
|
This paper demonstrates that nonmechanistic, dynamical explanations are a viable approach to explanation in the special sciences. The claim that dynamical models can be explanatory without reference to mechanisms has previously been met with three lines of criticism from mechanists: the causal relevance concern, the genuine laws concern, and the charge of predictivism. I argue, however, that these mechanist criticisms fail to defeat nonmechanistic, dynamical explanation. Using the examples of Haken et al.’s ([1985]) HKB model of bimanual coordination, and Thelen (...) |
|
|
|
This paper proposes a brain-inspired cognitive architecture that incorporates approximations to the concepts of consciousness, imagination, and emotion. To emulate the empirically established cognitive efficacy of conscious as opposed to non-conscious information processing in the mammalian brain, the architecture adopts a model of information flow from global workspace theory. Cognitive functions such as anticipation and planning are realised through internal simulation of interaction with the environment. Action selection, in both actual and internally simulated interaction with the environment, is mediated by (...) |
|
To figure out whether the main empirical question “Is our brain hardwired to believe in and produce God, or is our brain hardwired to perceive and experience God?” is answered, this paper presents systematic critical review of the positions, arguments and controversies of each side of the neuroscientific-theological debate and puts forward an integral view where the human is seen as a psycho-somatic entity consisting of the multiple levels and dimensions of human existence (physical, biological, psychological, and spiritual reality), allowing (...) |
|
This paper analyzes an explicit instantiation of the program of neurophenomenology in a neuroscientific protocol. Neurophenomenology takes seriously the importance of linking the scientific study of consciousness to the careful examination of experience with a specific first-person methodology. My first claim is that such strategy is a fruitful heuristic because it produces new data and illuminates their relation to subjective experience. My second claim is that the approach could open the door to a natural account of the structure of human (...) |
|
|
|
The standard behavioral index for human consciousness is the ability to report events with accuracy. While this method is routinely used for scientific and medical applications in humans, it is not easy to generalize to other species. Brain evidence may lend itself more easily to comparative testing. Human consciousness involves widespread, relatively fast low-amplitude interactions in the thalamocortical core of the brain, driven by current tasks and conditions. These features have also been found in other mammals, which suggests that consciousness (...) |
|
Although “theory” has been the prevalent unit of analysis in the meta-study of science throughout most of the twentieth century, the concept remains elusive. I further explore the leitmotiv of several authors in this issue: that we should deal with theorizing (rather than theory) in biology as a cognitive activity that is to be investigated naturalistically. I first contrast how philosophers and biologists have tended to think about theory in the last century or so, and consider recent calls to upgrade (...) |
|
Recently, it has been provocatively claimed that dynamical modeling approaches signal the emergence of a new explanatory framework distinct from that of mechanistic explanation. This paper rejects this proposal and argues that dynamical explanations are fully compatible with, even naturally construed as, instances of mechanistic explanations. Specifically, it is argued that the mathematical framework of dynamics provides a powerful descriptive scheme for revealing temporal features of activities in mechanisms and plays an explanatory role to the extent it is deployed for (...) |
|
By reviewing most of the neurobiology of consciousness, this article highlights some major reasons why a successful emulation of the dynamics of human consciousness by artificial intelligence is unlikely. The analysis provided leads to conclude that human consciousness is epigenetically determined and experience and context-dependent at the individual level. It is subject to changes in time that are essentially unpredictable. If cracking the code to human consciousness were possible, the result would most likely have to consist of a temporal pattern (...) |
|
Applying the concepts of dynamical systems theory to explain cognitive phenomena is still a fairly recent trend in cognitive science and its potential and consequences are not nearly mapped out. A decade ago, dynamical approaches were introduced as a paradigm shift in cognitive science and in this paper I concentrate on how to substantiate this claim. After having considered and rejected the possibility that continuous time is the crucial factor, I present Kelso’s model of a near-cognitive phenomenon which invokes self-organization (...) |
|
In their historical overview of cognitive science, Bechtel, Abraham- son and Graham (1999) describe the field as expanding in focus be- ginning in the mid-1980s. The field had spent the previous 25 years on internalist, high-level GOFAI (“good old fashioned artificial intelli- gence” [Haugeland 1985]), and was finally moving “outwards into the environment and downards into the brain” (Bechtel et al, 1999, p.75). One important force behind the downward movement was Patricia Churchland’s Neurophilosophy (1986). This book began a movement bearing (...) |
|
|
|
Abstract. Following the tracks of Ryle and based upon the theory of complex systems, we shall develop a characterization of action-based consciousness as an embodied, embedded, selforganized process in which action and dispositions occupy a special place. From this perspective, consciousness is not a unique prerogative of humans, but it is spread all around, throughout the evolution of life. We argue that artificial systems such as robots currently lack the genuine embodied embeddedness that allows the type of self-organization that is (...) |
|
Individuals make decisions under uncertainty every day based on incomplete information concerning the potential outcome of the choice or chance levels. The choices individuals make often deviate from the rational or mathematically objective solution. Accordingly, the dynamics of human decision-making are difficult to capture using conventional, linear mathematical models. Here, we present data from a two-choice task with variable risk between sure loss and risky loss to illustrate how a simple nonlinear dynamical system can be employed to capture the dynamics (...) |
|
In this brief overview paper, we analyse information flow in the brain. Although Shannon’s information concept, in its pure algebraic form, has made a number of valuable contributions to neuroscience, information dynamics within the brain is not fully captured by its classical description. These additional dynamics consist of self-organisation, interplay of stability/instability, timing of sequential processing, coordination of multiple sequential streams, circular causality between bottom-up and top-down operations, and information creation. Importantly, all of these processes are dynamic, hierarchically nested and (...) |
|
The brain displays both the anatomical features of a vast amount of interconnected topological mappings as well as the functional features of a nonlinear, metastable system at the edge of chaos, equipped with a phase space where mental random walks tend towards lower energetic basins. Nevertheless, with the exception of some advanced neuro-anatomic descriptions and present-day connectomic research, very few studies have been addressing the topological path of a brain embedded or embodied in its external and internal environment. Herein, by (...) |
|
|
|
|
|
Concepts of space and time are widely developed in physics. However, there is a considerable lack of biologically plausible theoretical frameworks that can demonstrate how space and time dimensions are implemented in the activity of the most complex life-system – the brain with a mind. Brain activity is organized both temporally and spatially, thus representing space-time in the brain. Critical analysis of recent research on the space-time organization of the brain’s activity pointed to the existence of so-called operational space-time in (...) |
|
|
|
|