Switch to: References

# Solovay-Type Characterizations for Forcing-Algebras

Journal of Symbolic Logic 64 (3):1307-1323 (1999)

 A Null Ideal for Inaccessibles.Sy-David Friedman & Giorgio Laguzzi - 2017 - Archive for Mathematical Logic 56 (5-6):691-697.In this paper we introduce a tree-like forcing notion extending some properties of the random forcing in the context of 2κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^\kappa$$\end{document}, κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa$$\end{document} inaccessible, and study its associated ideal of null sets and notion of measurability. This issue was addressed by Shelah ), arXiv:0904.0817, Problem 0.5) and concerns the definition of a forcing which is κκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} (...)No categories Direct download (2 more)     Export citation Bookmark 2 citations Polarized Partitions on the Second Level of the Projective Hierarchy.Jörg Brendle & Yurii Khomskii - 2012 - Annals of Pure and Applied Logic 163 (9):1345-1357. Direct download (5 more)     Export citation Bookmark 1 citation More on Trees and Cohen Reals.Giorgio Laguzzi & Brendan Stuber‐Rousselle - 2020 - Mathematical Logic Quarterly 66 (2):173-181.No categories Direct download (2 more)     Export citation Bookmark Full-Splitting Miller Trees and Infinitely Often Equal Reals.Yurii Khomskii & Giorgio Laguzzi - 2017 - Annals of Pure and Applied Logic 168 (8):1491-1506. Direct download (5 more)     Export citation Bookmark 2 citations Some Considerations on Amoeba Forcing Notions.Giorgio Laguzzi - 2014 - Archive for Mathematical Logic 53 (5-6):487-502.In this paper we analyse some notions of amoeba for tree forcings. In particular we introduce an amoeba-Silver and prove that it satisfies quasi pure decision but not pure decision. Further we define an amoeba-Sacks and prove that it satisfies the Laver property. We also show some application to regularity properties. We finally present a generalized version of amoeba and discuss some interesting associated questions. Direct download (2 more)     Export citation Bookmark 3 citations Cichoń’s Diagram, Regularity Properties and $${\varvec{\delta}^1_3}$$ Δ 3 1 Sets of Reals.Vera Fischer, Sy David Friedman & Yurii Khomskii - 2014 - Archive for Mathematical Logic 53 (5-6):695-729.We study regularity properties related to Cohen, random, Laver, Miller and Sacks forcing, for sets of real numbers on the Δ31\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Delta}^1_3}$$\end{document} level of the projective hieararchy. For Δ21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Delta}^1_2}$$\end{document} and Σ21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Sigma}^1_2}$$\end{document} sets, the relationships between these properties follows the pattern of the well-known Cichoń diagram for cardinal characteristics of the continuum. It is known that (...) Direct download (2 more)     Export citation Bookmark 3 citations On the Separation of Regularity Properties of the Reals.Giorgio Laguzzi - 2014 - Archive for Mathematical Logic 53 (7-8):731-747.We present a model where ω1 is inaccessible by reals, Silver measurability holds for all sets but Miller and Lebesgue measurability fail for some sets. This contributes to a line of research started by Shelah in the 1980s and more recently continued by Schrittesser and Friedman, regarding the separation of different notions of regularity properties of the real line. No categories Direct download (2 more)     Export citation Bookmark 2 citations Between Polish and Completely Baire.Andrea Medini & Lyubomyr Zdomskyy - 2015 - Archive for Mathematical Logic 54 (1-2):231-245.All spaces are assumed to be separable and metrizable. Consider the following properties of a space X. X is Polish.For every countable crowded Q⊆X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Q \subseteq X}$$\end{document} there exists a crowded Q′⊆Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Q'\subseteq Q}$$\end{document} with compact closure.Every closed subspace of X is either scattered or it contains a homeomorphic copy of 2ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2^\omega}$$\end{document}.Every closed subspace of X (...) Direct download (6 more)     Export citation Bookmark 2 citations Projective Absoluteness for Sacks Forcing.Daisuke Ikegami - 2009 - Archive for Mathematical Logic 48 (7):679-690.We show that ${{\bf \Sigma}^1_3}$ -absoluteness for Sacks forcing is equivalent to the non-existence of a ${{\bf \Delta}^1_2}$ Bernstein set. We also show that Sacks forcing is the weakest forcing notion among all of the preorders that add a new real with respect to ${{\bf \Sigma}^1_3}$ forcing absoluteness. Direct download (6 more)     Export citation Bookmark 1 citation Forcing Absoluteness and Regularity Properties.Daisuke Ikegami - 2010 - Annals of Pure and Applied Logic 161 (7):879-894.For a large natural class of forcing notions, we prove general equivalence theorems between forcing absoluteness statements, regularity properties, and transcendence properties over and the core model . We use our results to answer open questions from set theory of the reals. Direct download (5 more)     Export citation Bookmark 9 citations Questions on Generalised Baire Spaces.Yurii Khomskii, Giorgio Laguzzi, Benedikt Löwe & Ilya Sharankou - 2016 - Mathematical Logic Quarterly 62 (4-5):439-456.No categories Direct download (3 more)     Export citation Bookmark 5 citations Regularity Properties on the Generalized Reals.Sy David Friedman, Yurii Khomskii & Vadim Kulikov - 2016 - Annals of Pure and Applied Logic 167 (4):408-430. Direct download (3 more)     Export citation Bookmark 4 citations