Citations of:
Add citations
You must login to add citations.
|
|
We propose in this paper a family of algebraic models of ZFC based on the three-valued paraconsistent logic LPT0, a linguistic variant of da Costa and D’Ottaviano’s logic J3. The semantics is given by twist structures defined over complete Boolean agebras. The Boolean-valued models of ZFC are adapted to twist-valued models of an expansion of ZFC by adding a paraconsistent negation. This allows for inconsistent sets w satisfying ‘not (w = w)’, where ‘not’ stands for the paraconsistent negation. Finally, our (...) |
|
One of the most expected properties of a logical system is that it can be algebraizable, in the sense that an algebraic counterpart of the deductive machinery could be found. Since the inception of da Costa's paraconsistent calculi, an algebraic equivalent for such systems have been searched. It is known that these systems are non self-extensional (i.e., they do not satisfy the replacement property). More than this, they are not algebraizable in the sense of Blok-Pigozzi. The same negative results hold (...) |
|
Boolean-valued models of set theory were independently introduced by Scott, Solovay and Vopěnka in 1965, offering a natural and rich alternative for describing forcing. The original method was adapted by Takeuti, Titani, Kozawa and Ozawa to lattice-valued models of set theory. After this, Löwe and Tarafder proposed a class of algebras based on a certain kind of implication which satisfy several axioms of ZF. From this class, they found a specific 3-valued model called PS3 which satisfies all the axioms of (...) |