Switch to: References

Add citations

You must login to add citations.
  1. Hypersequents and the Proof Theory of Intuitionistic Fuzzy Logic.Matthias Baaz & Richard Zach - 2000 - In Peter G. Clote & Helmut Schwichtenberg (eds.), Computer Science Logic. 14th International Workshop, CSL 2000. Berlin: Springer. pp. 187– 201.
    Takeuti and Titani have introduced and investigated a logic they called intuitionistic fuzzy logic. This logic is characterized as the first-order Gödel logic based on the truth value set [0,1]. The logic is known to be axiomatizable, but no deduction system amenable to proof-theoretic, and hence, computational treatment, has been known. Such a system is presented here, based on previous work on hypersequent calculi for propositional Gödel logics by Avron. It is shown that the system is sound and complete, and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Hypersequent and Display Calculi – a Unified Perspective.Agata Ciabattoni, Revantha Ramanayake & Heinrich Wansing - 2014 - Studia Logica 102 (6):1245-1294.
    This paper presents an overview of the methods of hypersequents and display sequents in the proof theory of non-classical logics. In contrast with existing surveys dedicated to hypersequent calculi or to display calculi, our aim is to provide a unified perspective on these two formalisms highlighting their differences and similarities and discussing applications and recent results connecting and comparing them.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Multiple-Conclusion Rules, Hypersequents Syntax and Step Frames.Nick Bezhanishvili & Silvio Ghilardi - 2014 - In Rajeev Goré, Barteld Kooi & Agi Kurucz (eds.), Advances in Modal Logic, Volume 10. CSLI Publications. pp. 54-73.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Intermediate Logics Admitting a Structural Hypersequent Calculus.Frederik Lauridsen - 2019 - Studia Logica 107 (2):247-282.
    We characterise the intermediate logics which admit a cut-free hypersequent calculus of the form \, where \ is the hypersequent counterpart of the sequent calculus \ for propositional intuitionistic logic, and \ is a set of so-called structural hypersequent rules, i.e., rules not involving any logical connectives. The characterisation of this class of intermediate logics is presented both in terms of the algebraic and the relational semantics for intermediate logics. We discuss various—positive as well as negative—consequences of this characterisation.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Completeness Theorem for Dummett's LC Quantified and Some of its Extensions.Giovanna Corsi - 1992 - Studia Logica 51 (2):317 - 335.
    Dummett's logic LC quantified, Q-LC, is shown to be characterized by the extended frame Q+, ,D, where Q+ is the set of non-negative rational numbers, is the numerical relation less or equal then and D is the domain function such that for all v, w Q+, Dv and if v w, then D v . D v D w . Moreover, simple completeness proofs of extensions of Q-LC are given.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • Gentzen Calculi for the Existence Predicate.Matthias Baaz & Rosalie Iemhoff - 2006 - Studia Logica 82 (1):7-23.
    We introduce Gentzen calculi for intuitionistic logic extended with an existence predicate. Such a logic was first introduced by Dana Scott, who provided a proof system for it in Hilbert style. We prove that the Gentzen calculus has cut elimination in so far that all cuts can be restricted to very simple ones. Applications of this logic to Skolemization, truth value logics and linear frames are also discussed.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Skolemization of Existential Quantifiers in Intuitionistic Logic.Matthias Baaz & Rosalie Iemhoff - 2006 - Annals of Pure and Applied Logic 142 (1):269-295.
    In this paper an alternative Skolemization method is introduced that, for a large class of formulas, is sound and complete with respect to intuitionistic logic. This class extends the class of formulas for which standard Skolemization is sound and complete and includes all formulas in which all strong quantifiers are existential. The method makes use of an existence predicate first introduced by Dana Scott.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Bounded Proof Property Via Step Algebras and Step Frames.Nick Bezhanishvili & Silvio Ghilardi - 2014 - Annals of Pure and Applied Logic 165 (12):1832-1863.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations