Citations of:
A Cut‐Free Calculus For Dummett's LC Quantified
Mathematical Logic Quarterly 35 (4):289-301 (1989)
Add citations
You must login to add citations.
|
|
This paper presents an overview of the methods of hypersequents and display sequents in the proof theory of non-classical logics. In contrast with existing surveys dedicated to hypersequent calculi or to display calculi, our aim is to provide a unified perspective on these two formalisms highlighting their differences and similarities and discussing applications and recent results connecting and comparing them. |
|
No categories |
|
We characterise the intermediate logics which admit a cut-free hypersequent calculus of the form \, where \ is the hypersequent counterpart of the sequent calculus \ for propositional intuitionistic logic, and \ is a set of so-called structural hypersequent rules, i.e., rules not involving any logical connectives. The characterisation of this class of intermediate logics is presented both in terms of the algebraic and the relational semantics for intermediate logics. We discuss various—positive as well as negative—consequences of this characterisation. |
|
Dummett's logic LC quantified, Q-LC, is shown to be characterized by the extended frame Q+, ,D, where Q+ is the set of non-negative rational numbers, is the numerical relation less or equal then and D is the domain function such that for all v, w Q+, Dv and if v w, then D v . D v D w . Moreover, simple completeness proofs of extensions of Q-LC are given. |
|
We introduce Gentzen calculi for intuitionistic logic extended with an existence predicate. Such a logic was first introduced by Dana Scott, who provided a proof system for it in Hilbert style. We prove that the Gentzen calculus has cut elimination in so far that all cuts can be restricted to very simple ones. Applications of this logic to Skolemization, truth value logics and linear frames are also discussed. |
|
In this paper an alternative Skolemization method is introduced that, for a large class of formulas, is sound and complete with respect to intuitionistic logic. This class extends the class of formulas for which standard Skolemization is sound and complete and includes all formulas in which all strong quantifiers are existential. The method makes use of an existence predicate first introduced by Dana Scott. |
|
|