Switch to: References

Add citations

You must login to add citations.
  1. Cardinal Characteristics at Κ in a Small U Model.A. D. Brooke-Taylor, V. Fischer, S. D. Friedman & D. C. Montoya - 2017 - Annals of Pure and Applied Logic 168 (1):37-49.
  • Models of Real-Valued Measurability.Sakae Fuchino, Noam Greenberg & Saharon Shelah - 2006 - Annals of Pure and Applied Logic 142 (1):380-397.
    Solovay’s random-real forcing [R.M. Solovay, Real-valued measurable cardinals, in: Axiomatic Set Theory , Amer. Math. Soc., Providence, R.I., 1971, pp. 397–428] is the standard way of producing real-valued measurable cardinals. Following questions of Fremlin, by giving a new construction, we show that there are combinatorial, measure-theoretic properties of Solovay’s model that do not follow from the existence of real-valued measurability.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • On ◁∗-Maximality.Mirna Džamonja & Saharon Shelah - 2004 - Annals of Pure and Applied Logic 125 (1-3):119-158.
    This paper investigates a connection between the semantic notion provided by the ordering * among theories in model theory and the syntactic SOPn hierarchy of Shelah. It introduces two properties which are natural extensions of this hierarchy, called SOP2 and SOP1. It is shown here that SOP3 implies SOP2 implies SOP1. In Shelah's article 229) it was shown that SOP3 implies *-maximality and we prove here that *-maximality in a model of GCH implies a property called SOP2″. It has been (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • Small Universal Families for Graphs Omitting Cliques Without GCH.Katherine Thompson - 2010 - Archive for Mathematical Logic 49 (7-8):799-811.
    When no single universal model for a set of structures exists at a given cardinal, then one may ask in which models of set theory does there exist a small family which embeds the rest. We show that for λ+-graphs (λ regular) omitting cliques of some finite or uncountable cardinality, it is consistent that there are small universal families and 2λ > λ+. In particular, we get such a result for triangle-free graphs.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Universal Graphs at ℵω1+1.Jacob Davis - 2017 - Annals of Pure and Applied Logic 168 (10):1878-1901.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • The Descriptive Set-Theoretical Complexity of the Embeddability Relation on Models of Large Size.Luca Motto Ros - 2013 - Annals of Pure and Applied Logic 164 (12):1454-1492.
    We show that if κ is a weakly compact cardinal then the embeddability relation on trees of size κ is invariantly universal. This means that for every analytic quasi-order R on the generalized Cantor space View the MathML source there is an Lκ+κ-sentence φ such that the embeddability relation on its models of size κ, which are all trees, is Borel bi-reducible to R. In particular, this implies that the relation of embeddability on trees of size κ is complete for (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations