Switch to: References

Add citations

You must login to add citations.
  1. Infinity and continuum in the alternative set theory.Kateřina Trlifajová - 2021 - European Journal for Philosophy of Science 12 (1):1-23.
    Alternative set theory was created by the Czech mathematician Petr Vopěnka in 1979 as an alternative to Cantor’s set theory. Vopěnka criticised Cantor’s approach for its loss of correspondence with the real world. Alternative set theory can be partially axiomatised and regarded as a nonstandard theory of natural numbers. However, its intention is much wider. It attempts to retain a correspondence between mathematical notions and phenomena of the natural world. Through infinity, Vopěnka grasps the phenomena of vagueness. Infinite sets are (...)
    Direct download (3 more)  
    Export citation  
    Bookmark   1 citation  
  • Computational Complexity Theory and the Philosophy of Mathematics†.Walter Dean - 2019 - Philosophia Mathematica 27 (3):381-439.
    Computational complexity theory is a subfield of computer science originating in computability theory and the study of algorithms for solving practical mathematical problems. Amongst its aims is classifying problems by their degree of difficulty — i.e., how hard they are to solve computationally. This paper highlights the significance of complexity theory relative to questions traditionally asked by philosophers of mathematics while also attempting to isolate some new ones — e.g., about the notion of feasibility in mathematics, the $\mathbf{P} \neq \mathbf{NP}$ (...)
    Direct download (2 more)  
    Export citation  
  • Strict Finitism's Unrequited Love for Computational Complexity.Noel Arteche - manuscript
    As a philosophy of mathematics, strict finitism has been traditionally concerned with the notion of feasibility, defended mostly by appealing to the physicality of mathematical practice. This has led the strict finitists to influence and be influenced by the field of computational complexity theory, under the widely held belief that this branch of mathematics is concerned with the study of what is “feasible in practice”. In this paper, I survey these ideas and contend that, contrary to popular belief, complexity theory (...)
    Direct download  
    Export citation