Citations of work:

J. M. Dieterle (2010). Social Construction in the Philosophy of Mathematics: A Critical Evaluation of Julian Cole's Theory.

Order:
Are we missing citations?

PhilPapers citations & references are currently in beta testing. We expect to add many more in the future.

Meanwhile, you can use our bibliography tool to import references for this or another work.

Or you can directly add citations for the above work:

Search for work by author name and title
Add directly by record ID

  1.  38
    Social Construction, Mathematics, and the Collective Imposition of Function Onto Reality.Julian C. Cole - 2015 - Erkenntnis 80 (6):1101-1124.
    Stereotypes of social construction suggest that the existence of social constructs is accidental and that such constructs have arbitrary and subjective features. In this paper, I explore a conception of social construction according to which it consists in the collective imposition of function onto reality and show that, according to this conception, these stereotypes are incorrect. In particular, I argue that the collective imposition of function onto reality is typically non-accidental and that the products of such imposition frequently have non-arbitrary (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  45
    The Semantics of Social Constructivism.Shay Allen Logan - 2015 - Synthese 192 (8):2577-2598.
    This essay will examine some rather serious trouble confronting claims that mathematicalia might be social constructs. Because of the clarity with which he makes the case and the philosophical rigor he applies to his analysis, our exemplar of a social constructivist in this sense is Julian Cole, especially the work in his 2009 and 2013 papers on the topic. In a 2010 paper, Jill Dieterle criticized the view in Cole’s 2009 paper for being unable to account for the atemporality of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  90
    Towards an Institutional Account of the Objectivity, Necessity, and Atemporality of Mathematics.Julian C. Cole - 2013 - Philosophia Mathematica 21 (1):9-36.
    I contend that mathematical domains are freestanding institutional entities that, at least typically, are introduced to serve representational functions. In this paper, I outline an account of institutional reality and a supporting metaontological perspective that clarify the content of this thesis. I also argue that a philosophy of mathematics that has this thesis as its central tenet can account for the objectivity, necessity, and atemporality of mathematics.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   4 citations