Switch to: References

Add citations

You must login to add citations.
  1. Contiguity and Distributivity in the Enumerable Turing Degrees.Rodney G. Downey & Steffen Lempp - 1997 - Journal of Symbolic Logic 62 (4):1215-1240.
    We prove that a enumerable degree is contiguous iff it is locally distributive. This settles a twenty-year old question going back to Ladner and Sasso. We also prove that strong contiguity and contiguity coincide, settling a question of the first author, and prove that no $m$-topped degree is contiguous, settling a question of the first author and Carl Jockusch [11]. Finally, we prove some results concerning local distributivity and relativized weak truth table reducibility.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Computably Enumerable Reals and Uniformly Presentable Ideals.S. A. Terwijn & R. Downey - 2002 - Mathematical Logic Quarterly 48 (S1):29-40.
    We study the relationship between a computably enumerable real and its presentations. A set A presents a computably enumerable real α if A is a computably enumerable prefix-free set of strings such that equation image. Note that equation image is precisely the measure of the set of reals that have a string in A as an initial segment. So we will simply abbreviate equation image by μ. It is known that whenever A so presents α then A ≤wttα, where ≤wtt (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Limits on Jump Inversion for Strong Reducibilities.Barbara F. Csima, Rod Downey & Keng Meng Ng - 2011 - Journal of Symbolic Logic 76 (4):1287-1296.
    We show that Sacks' and Shoenfield's analogs of jump inversion fail for both tt- and wtt-reducibilities in a strong way. In particular we show that there is a ${\mathrm{\Delta }}_{2}^{0}$ set B > tt ∅′ such that there is no c.e. set A with A′ ≡ wtt B. We also show that there is a ${\mathrm{\Sigma }}_{2}^{0}$ set C > tt ∅′ such that there is no ${\mathrm{\Delta }}_{2}^{0}$ set D with D′ ≡ wtt C.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Embedding Lattices Into the Wtt-Degrees Below 0'.Rod Downey & Christine Haught - 1994 - Journal of Symbolic Logic 59 (4):1360-1382.
  • Intervals and Sublattices of the R.E. Weak Truth Table Degrees, Part I: Density.R. G. Downey - 1989 - Annals of Pure and Applied Logic 41 (1):1-26.
  • Splitting Theorems in Recursion Theory.Rod Downey & Michael Stob - 1993 - Annals of Pure and Applied Logic 65 (1):1-106.
    A splitting of an r.e. set A is a pair A1, A2 of disjoint r.e. sets such that A1 A2 = A. Theorems about splittings have played an important role in recursion theory. One of the main reasons for this is that a splitting of A is a decomposition of A in both the lattice, , of recursively enumerable sets and in the uppersemilattice, R, of recursively enumerable degrees . Thus splitting theor ems have been used to obtain results about (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • On Speedable and Levelable Vector Spaces.Frank A. Bäuerle & Jeffrey B. Remmel - 1994 - Annals of Pure and Applied Logic 67 (1-3):61-112.
    In this paper, we study the lattice of r.e. subspaces of a recursively presented vector space V ∞ with regard to the various complexity-theoretic speed-up properties such as speedable, effectively speedable, levelable, and effectively levelable introduced by Blum and Marques. In particular, we study the interplay between an r.e. basis A for a subspace V of V ∞ and V with regard to these properties. We show for example that if A or V is speedable , then V is levelable (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations