Switch to: References

Add citations

You must login to add citations.
  1. Contiguity and Distributivity in the Enumerable Turing Degrees.Rodney G. Downey & Steffen Lempp - 1997 - Journal of Symbolic Logic 62 (4):1215-1240.
    We prove that a enumerable degree is contiguous iff it is locally distributive. This settles a twenty-year old question going back to Ladner and Sasso. We also prove that strong contiguity and contiguity coincide, settling a question of the first author, and prove that no $m$-topped degree is contiguous, settling a question of the first author and Carl Jockusch [11]. Finally, we prove some results concerning local distributivity and relativized weak truth table reducibility.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Splittings of Effectively Speedable Sets and Effectively Levelable Sets.Roland S. H. Omanadze - 2004 - Journal of Symbolic Logic 69 (1):143-158.
    We prove that a computably enumerable set A is effectively speedable (effectively levelable) if and only if there exists a splitting (A₀,A₁) of A such that both A₀ and A₁ are effectively speedable (effectively levelable). These results answer two questions raised by J. B. Remmel.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  • Some Properties of R-Maximal Sets and Q 1,N -Reducibility.R. Sh Omanadze - 2015 - Archive for Mathematical Logic 54 (7-8):941-959.
    We show that the c.e. Q1,N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Q_{1,N}}$$\end{document}-degrees are not an upper semilattice. We prove that if M is an r-maximal set, A is an arbitrary set and M≡Q1,NA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M \equiv{}_ {Q_{1,N}}A}$$\end{document}, then M≤mA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M\leq{}_{m} A}$$\end{document}. Also, if M1 and M2 are r-maximal sets, A and B are major subsets of M1 and M2, respectively, and M1\A≡Q1,NM2\B\documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Bounded Quasi‐Degrees of C.E. Sets.Roland Sh Omanadze - 2013 - Mathematical Logic Quarterly 59 (3):238-246.
  • On the Degrees of Diagonal Sets and the Failure of the Analogue of a Theorem of Martin.Keng Meng Ng - 2009 - Notre Dame Journal of Formal Logic 50 (4):469-493.
    Semi-hyperhypersimple c.e. sets, also known as diagonals, were introduced by Kummer. He showed that by considering an analogue of hyperhypersimplicity, one could characterize the sets which are the Halting problem relative to arbitrary computable numberings. One could also consider half of splittings of maximal or hyperhypersimple sets and get another variant of maximality and hyperhypersimplicity, which are closely related to the study of automorphisms of the c.e. sets. We investigate the Turing degrees of these classes of c.e. sets. In particular, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Implicit Measurements of Dynamic Complexity Properties and Splittings of Speedable Sets.Michael A. Jahn - 1999 - Journal of Symbolic Logic 64 (3):1037-1064.
    We prove that any speedable computably enumerable set may be split into a disjoint pair of speedable computably enumerable sets. This solves a longstanding question of J.B. Remmel concerning the behavior of computably enumerable sets in Blum's machine independent complexity theory. We specify dynamic requirements and implement a novel way of detecting speedability-by embedding the relevant measurements into the substage structure of the tree construction. Technical difficulties in satisfying the dynamic requirements lead us to implement "local" strategies that only look (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  • Effectively and Noneffectively Nowhere Simple Sets.Valentina S. Harizanov - 1996 - Mathematical Logic Quarterly 42 (1):241-248.
    R. Shore proved that every recursively enumerable set can be split into two nowhere simple sets. Splitting theorems play an important role in recursion theory since they provide information about the lattice ϵ of all r. e. sets. Nowhere simple sets were further studied by D. Miller and J. Remmel, and we generalize some of their results. We characterize r. e. sets which can be split into two effectively nowhere simple sets, and r. e. sets which can be split into (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Completely Mitotic C.E. Degrees and Non-Jump Inversion.Evan J. Griffiths - 2005 - Annals of Pure and Applied Logic 132 (2-3):181-207.
    A completely mitotic computably enumerable degree is a c.e. degree in which every c.e. set is mitotic, or equivalently in which every c.e. set is autoreducible. There are known to be low, low2, and high completely mitotic degrees, though the degrees containing non-mitotic sets are dense in the c.e. degrees. We show that there exists an upper cone of c.e. degrees each of which contains a non-mitotic set, and that the completely mitotic c.e. degrees are nowhere dense in the c.e. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Splitting Theorems and the Jump Operator.R. G. Downey & Richard A. Shore - 1998 - Annals of Pure and Applied Logic 94 (1-3):45-52.
    We investigate the relationship of the degrees of splittings of a computably enumerable set and the degree of the set. We prove that there is a high computably enumerable set whose only proper splittings are low 2.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Some Orbits for E.Peter Cholak, Rod Downey & Eberhard Herrmann - 2001 - Annals of Pure and Applied Logic 107 (1-3):193-226.
    In this article we establish the existence of a number of new orbits in the automorphism group of the computably enumerable sets. The degree theoretical aspects of these orbits also are examined.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Some Orbits For.Peter Cholak, Rod Downey & Eberhard Herrmann - 2001 - Annals of Pure and Applied Logic 107 (1-3):193-226.
    In this article we establish the existence of a number of new orbits in the automorphism group of the computably enumerable sets. The degree theoretical aspects of these orbits also are examined.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Maximal Contiguous Degrees.Peter Cholak, Rod Downey & Stephen Walk - 2002 - Journal of Symbolic Logic 67 (1):409-437.
    A computably enumerable (c.e.) degree is a maximal contiguous degree if it is contiguous and no c.e. degree strictly above it is contiguous. We show that there are infinitely many maximal contiguous degrees. Since the contiguous degrees are definable, the class of maximal contiguous degrees provides the first example of a definable infinite anti-chain in the c.e. degrees. In addition, we show that the class of maximal contiguous degrees forms an automorphism base for the c.e. degrees and therefore for the (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Isomorphisms of Splits of Computably Enumerable Sets.Peter A. Cholak & Leo A. Harrington - 2003 - Journal of Symbolic Logic 68 (3):1044-1064.
    We show that if A and $\widehat{A}$ are automorphic via Φ then the structures $S_{R}(A)$ and $S_{R}(\widehat{A})$ are $\Delta_{3}^{0}-isomorphic$ via an isomorphism Ψ induced by Φ. Then we use this result to classify completely the orbits of hhsimple sets.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Non-Splittings of Speedable Sets.Ellen S. Chih - 2015 - Journal of Symbolic Logic 80 (2):609-635.
  • Kolmogorov Complexity and Computably Enumerable Sets.George Barmpalias & Angsheng Li - 2013 - Annals of Pure and Applied Logic 164 (12):1187-1200.