Switch to: References

Add citations

You must login to add citations.
  1. Surreal Time and Ultratasks.Haidar Al-Dhalimy & Charles J. Geyer - 2016 - Review of Symbolic Logic 9 (4):836-847.
    This paper suggests that time could have a much richer mathematical structure than that of the real numbers. Clark & Read (1984) argue that a hypertask (uncountably many tasks done in a finite length of time) cannot be performed. Assuming that time takes values in the real numbers, we give a trivial proof of this. If we instead take the surreal numbers as a model of time, then not only are hypertasks possible but so is an ultratask (a sequence which (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ten Misconceptions From the History of Analysis and Their Debunking.Piotr Błaszczyk, Mikhail G. Katz & David Sherry - 2013 - Foundations of Science 18 (1):43-74.
    The widespread idea that infinitesimals were “eliminated” by the “great triumvirate” of Cantor, Dedekind, and Weierstrass is refuted by an uninterrupted chain of work on infinitesimal-enriched number systems. The elimination claim is an oversimplification created by triumvirate followers, who tend to view the history of analysis as a pre-ordained march toward the radiant future of Weierstrassian epsilontics. In the present text, we document distortions of the history of analysis stemming from the triumvirate ideology of ontological minimalism, which identified the continuum (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus.Alexandre Borovik & Mikhail G. Katz - 2012 - Foundations of Science 17 (3):245-276.
    Cauchy’s contribution to the foundations of analysis is often viewed through the lens of developments that occurred some decades later, namely the formalisation of analysis on the basis of the epsilon-delta doctrine in the context of an Archimedean continuum. What does one see if one refrains from viewing Cauchy as if he had read Weierstrass already? One sees, with Felix Klein, a parallel thread for the development of analysis, in the context of an infinitesimal-enriched continuum. One sees, with Emile Borel, (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  • Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In defense (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Axiomatizing Changing Conceptions of the Geometric Continuum I: Euclid-Hilbert†.John T. Baldwin - 2018 - Philosophia Mathematica 26 (3):346-374.
    We give a general account of the goals of axiomatization, introducing a variant on Detlefsen’s notion of ‘complete descriptive axiomatization’. We describe how distinctions between the Greek and modern view of number, magnitude, and proportion impact the interpretation of Hilbert’s axiomatization of geometry. We argue, as did Hilbert, that Euclid’s propositions concerning polygons, area, and similar triangles are derivable from Hilbert’s first-order axioms. We argue that Hilbert’s axioms including continuity show much more than the geometrical propositions of Euclid’s theorems and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Axiomatizing Changing Conceptions of the Geometric Continuum II: Archimedes-Descartes-Hilbert-Tarski†.John T. Baldwin - 2019 - Philosophia Mathematica 27 (1):33-60.
    In Part I of this paper we argued that the first-order systems HP5 and EG are modest complete descriptive axiomatization of most of Euclidean geometry. In this paper we discuss two further modest complete descriptive axiomatizations: Tarksi’s for Cartesian geometry and new systems for adding $$\pi$$. In contrast we find Hilbert’s full second-order system immodest for geometrical purposes but appropriate as a foundation for mathematical analysis.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography.Karin Usadi Katz & Mikhail G. Katz - 2012 - Foundations of Science 17 (1):51-89.
    We analyze the developments in mathematical rigor from the viewpoint of a Burgessian critique of nominalistic reconstructions. We apply such a critique to the reconstruction of infinitesimal analysis accomplished through the efforts of Cantor, Dedekind, and Weierstrass; to the reconstruction of Cauchy’s foundational work associated with the work of Boyer and Grabiner; and to Bishop’s constructivist reconstruction of classical analysis. We examine the effects of a nominalist disposition on historiography, teaching, and research.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  • Cauchy's Continuum.Karin U. Katz & Mikhail G. Katz - 2011 - Perspectives on Science 19 (4):426-452.
    One of the most influential scientific treatises in Cauchy's era was J.-L. Lagrange's Mécanique Analytique, the second edition of which came out in 1811, when Cauchy was barely out of his teens. Lagrange opens his treatise with an unequivocal endorsement of infinitesimals. Referring to the system of infinitesimal calculus, Lagrange writes:Lorsqu'on a bien conçu l'esprit de ce système, et qu'on s'est convaincu de l'exactitude de ses résultats par la méthode géométrique des premières et dernières raisons, ou par la méthode analytique (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  • Theoriegeleitete Bestimmung von Objektmengen und Beobachtungsintervallen am Beispiel des Halleyschen Kometen.Ulrich Gähde - 2012 - Philosophia Naturalis 49 (2):207-224.
    The starting point of the following considerations is a case study concerning the discovery of Halley's comet and the theoretical description of its path. It is shown that the set of objects involved in that system and the time interval during which their paths are observed are determined in a theory dependent way – thereby making use of the very theory later used for that system's theoretical description. Metatheoretical consequences this fact has with respect to the structuralist view of empirical (...)
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  • Is the Continuum Hypothesis a Definite Mathematical Problem?Solomon Feferman - manuscript
    The purpose of this article is to explain why I believe that the Continuum Hypothesis (CH) is not a definite mathematical problem. My reason for that is that the concept of arbitrary set essential to its formulation is vague or underdetermined and there is no way to sharpen it without violating what it is supposed to be about. In addition, there is considerable circumstantial evidence to support the view that CH is not definite.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On What There is—Infinitesimals and the Nature of Numbers.Jens Erik Fenstad - 2015 - Inquiry: An Interdisciplinary Journal of Philosophy 58 (1):57-79.
    This essay will be divided into three parts. In the first part, we discuss the case of infintesimals seen as a bridge between the discrete and the continuous. This leads in the second part to a discussion of the nature of numbers. In the last part, we follow up with some observations on the obvious applicability of mathematics.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • The Subjective Roots of Forcing Theory and Their Influence in Independence Results.Stathis Livadas - 2015 - Axiomathes 25 (4):433-455.
    This article attempts a subjectively based approach, in fact one phenomenologically motivated, toward some key concepts of forcing theory, primarily the concepts of a generic set and its global properties and the absoluteness of certain fundamental relations in the extension to a forcing model M[G]. By virtue of this motivation and referring both to the original and current formulation of forcing I revisit certain set-theoretical notions serving as underpinnings of the theory and try to establish their deeper subjectively founded content (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Gretchenfragen an den Naturalisten.Gerhard Vollmer - 2012 - Philosophia Naturalis 49 (2):239-291.
    A philosophical position may be characterized in different ways. Here we try to say how the naturalist answers certain . The questions come from very different areas; the spectrum of subjects is therefore quite mixed. There are, however, aspects of order: We start with (questions about) abstract subjects like logic, mathematics, metaphysics, then turn to problems of realism. And since in general naturalists are realists, the following questions on truth, laws of nature, origin of the universe, cosmology, evolution, body-mind-problem, freedom (...)
    No categories
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • What is the Nature of Mathematical–Logical Objects?Stathis Livadas - 2017 - Axiomathes 27 (1):79-112.
    This article deals with a question of a most general, comprehensive and profound content as it is the nature of mathematical–logical objects insofar as these are considered objects of knowledge and more specifically objects of formal mathematical theories. As objects of formal theories they are dealt with in the sense they have acquired primarily from the beginnings of the systematic study of mathematical foundations in connection with logic dating from the works of G. Cantor and G. Frege in the last (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Transcendental Source of Logic by Way of Phenomenology.Stathis Livadas - 2018 - Axiomathes 28 (3):325-344.
    In this article I am going to argue for the possibility of a transcendental source of logic based on a phenomenologically motivated approach. My aim will be essentially carried out in two succeeding steps of reduction: the first one will be the indication of existence of an inherent temporal factor conditioning formal predicative discourse and the second one, based on a supplementary reduction of objective temporality, will be a recourse to a time-constituting origin which has to be assumed as a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark