Switch to: References

Add citations

You must login to add citations.
  1. The Notion of Explanation in Gödel’s Philosophy of Mathematics.Krzysztof Wójtowicz - 2019 - Studia Semiotyczne—English Supplement 30:85-106.
    The article deals with the question of in which sense the notion of explanation can be applied to Kurt Gödel’s philosophy of mathematics. Gödel, as a mathematical realist, claims that in mathematics we are dealing with facts that have an objective character. One of these facts is the solvability of all well-formulated mathematical problems—and this fact requires a clarification. The assumptions on which Gödel’s position is based are: metaphysical realism: there is a mathematical universe, it is objective and independent of (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Kategoria wyjaśniania a filozofia matematyki Gödla.Krzysztof Wójtowicz - 2018 - Studia Semiotyczne 32 (2):107-129.
    Artykuł dotyczy zagadnienia, w jakim sensie można stosować kategorię wyjaśnienia do interpretacji filozofii matematyki Kurta Gödla. Gödel – jako realista matematyczny – twierdzi bowiem, że w wypadku matematyki mamy do czynienia z niezależnymi od nas faktami. Jednym z owych faktów jest właśnie rozwiązywalność wszystkich dobrze postawionych problemów matematycznych – i ten fakt domaga się wyjaśnienia. Kluczem do zrozumienia stanowiska Gödla jest identyfikacja założeń, na których się opiera: metafizyczny realizm: istnieje uniwersum matematyczne, ma ono charakter obiektywny, niezależny od nas; optymizm epistemologiczny: (...)
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Objectivity and Reliability.Justin Clarke-Doane - 2017 - Canadian Journal of Philosophy 47 (6):841-855.
    Scanlon’s Being Realistic about Reasons (BRR) is a beautiful book – sleek, sophisticated, and programmatic. One of its key aims is to demystify knowledge of normative and mathematical truths. In this article, I develop an epistemological problem that Scanlon fails to explicitly address. I argue that his “metaphysical pluralism” can be understood as a response to that problem. However, it resolves the problem only if it undercuts the objectivity of normative and mathematical inquiry.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Mathematical and Moral Disagreement.Silvia Jonas - 2020 - Philosophical Quarterly 70 (279):302-327.
    The existence of fundamental moral disagreements is a central problem for moral realism and has often been contrasted with an alleged absence of disagreement in mathematics. However, mathematicians do in fact disagree on fundamental questions, for example on which set-theoretic axioms are true, and some philosophers have argued that this increases the plausibility of moral vis-à-vis mathematical realism. I argue that the analogy between mathematical and moral disagreement is not as straightforward as those arguments present it. In particular, I argue (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computational Complexity Theory and the Philosophy of Mathematics†.Walter Dean - 2019 - Philosophia Mathematica 27 (3):381-439.
    Computational complexity theory is a subfield of computer science originating in computability theory and the study of algorithms for solving practical mathematical problems. Amongst its aims is classifying problems by their degree of difficulty — i.e., how hard they are to solve computationally. This paper highlights the significance of complexity theory relative to questions traditionally asked by philosophers of mathematics while also attempting to isolate some new ones — e.g., about the notion of feasibility in mathematics, the $\mathbf{P} \neq \mathbf{NP}$ (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Carnap's Forgotten Criterion of Empirical Significance.James Justus - 2014 - Mind 123 (490):415-436.
    The waning popularity of logical empiricism and the supposed discovery of insurmountable technical difficulties led most philosophers to abandon the project to formulate a formal criterion of empirical significance. Such a criterion would delineate claims that observation can confirm or disconfirm from those it cannot. Although early criteria were clearly inadequate, criticisms made of later, more sophisticated criteria were often indefensible or easily answered. Most importantly, Carnap’s last criterion was seriously misinterpreted and an amended version of it remains tenable.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Three Dogmas of First-Order Logic and Some Evidence-Based Consequences for Constructive Mathematics of Differentiating Between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Beyond the Axioms: The Question of Objectivity in Mathematics.W. W. Tait - 2001 - Philosophia Mathematica 9 (1):21-36.
    This paper contains a defense against anti-realism in mathematics in the light both of incompleteness and of the fact that mathematics is a ‘cultural artifact.’. Anti-realism (here) is the view that theorems, say, of aritltmetic cannot be taken at face value to express true propositions about the system of numbers but must be reconstrued to be about somctliiiig else or about nothing at all. A ‘bite-the-bullet’ aspect of the defease is that, adopting new axioms, liitherto independent, is not. a matter (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Fraenkel's Axiom of Restriction: Axiom Choice, Intended Models and Categoricity.Georg Schiemer - 2010 - In Benedikt L.öwe & Thomas Müller (eds.), PhiMSAMP. Philosophy of Mathematics: Sociological Aspects and Mathematical Practice. College Publications. pp. 307{340.
  • What is Absolute Undecidability?†.Justin Clarke-Doane - 2013 - Noûs 47 (3):467-481.
    It is often alleged that, unlike typical axioms of mathematics, the Continuum Hypothesis (CH) is indeterminate. This position is normally defended on the ground that the CH is undecidable in a way that typical axioms are not. Call this kind of undecidability “absolute undecidability”. In this paper, I seek to understand what absolute undecidability could be such that one might hope to establish that (a) CH is absolutely undecidable, (b) typical axioms are not absolutely undecidable, and (c) if a mathematical (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Ipotesi del Continuo.Claudio Ternullo - 2017 - Aphex 16.
    L’Ipotesi del Continuo, formulata da Cantor nel 1878, è una delle congetture più note della teoria degli insiemi. Il Problema del Continuo, che ad essa è collegato, fu collocato da Hilbert, nel 1900, fra i principali problemi insoluti della matematica. A seguito della dimostrazione di indipendenza dell’Ipotesi del Continuo dagli assiomi della teoria degli insiemi, lo status attuale del problema è controverso. In anni più recenti, la ricerca di una soluzione del Problema del Continuo è stata anche una delle ragioni (...)
    Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • To Continue With Continuity.Martin Cooke - 2005 - Metaphysica 6 (2):91-109.
    The metaphysical concept of continuity is important, not least because physical continua are not known to be impossible. While it is standard to model them with a mathematical continuum based upon set-theoretical intuitions, this essay considers, as a contribution to the debate about the adequacy of those intuitions, the neglected intuition that dividing the length of a line by the length of an individual point should yield the line’s cardinality. The algebraic properties of that cardinal number are derived pre-theoretically from (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Aggregate Theory Versus Set Theory.Hartley Slater - 2003 - Erkenntnis 59 (2):189 - 202.
    Maddy's (1990) arguments against Aggregate Theory were undermined by the shift in her position in 1997. The present paper considers Aggregate Theory in the light of this, and the recent search for `New Axioms for Mathematics'. If Set Theory is the part-whole theory of singletons, then identifying singletons with their single members collapses Set Theory into Aggregate Theory. But if singletons are not identical to their single members, then they are not extensional objects and so are not a basis for (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Wonder of Colors and the Principle of Ariadne.Walter Carnielli & Carlos di Prisco - 2017 - In How Colours Matter to Philosophy. New . York: Springer. pp. 309-317.
    The Principle of Ariadne, formulated in 1988 ago by Walter Carnielli and Carlos Di Prisco and later published in 1993, is an infinitary principle that is independent of the Axiom of Choice in ZF, although it can be consistently added to the remaining ZF axioms. The present paper surveys, and motivates, the foundational importance of the Principle of Ariadne and proposes the Ariadne Game, showing that the Principle of Ariadne, corresponds precisely to a winning strategy for the Ariadne Game. Some (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Existence.Penelope Maddy - 2005 - Bulletin of Symbolic Logic 11 (3):351-376.
    Despite some discomfort with this grandly philosophical topic, I do in fact hope to address a venerable pair of philosophical chestnuts: mathematical truth and existence. My plan is to set out three possible stands on these issues, for an exercise in compare and contrast.' A word of warning, though, to philosophical purists (and perhaps of comfort to more mathematical readers): I will explore these philosophical positions with an eye to their interconnections with some concrete issues of set theoretic method.
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Mathematical Intuition Vs. Mathematical Monsters.Solomon Feferman - 2000 - Synthese 125 (3):317-332.
    Geometrical and physical intuition, both untutored andcultivated, is ubiquitous in the research, teaching,and development of mathematics. A number ofmathematical ``monsters'', or pathological objects, havebeen produced which – according to somemathematicians – seriously challenge the reliability ofintuition. We examine several famous geometrical,topological and set-theoretical examples of suchmonsters in order to see to what extent, if at all,intuition is undermined in its everyday roles.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • Does Reductive Proof Theory Have a Viable Rationale?Solomon Feferman - 2000 - Erkenntnis 53 (1-2):63-96.
    The goals of reduction andreductionism in the natural sciences are mainly explanatoryin character, while those inmathematics are primarily foundational.In contrast to global reductionistprograms which aim to reduce all ofmathematics to one supposedly ``universal'' system or foundational scheme, reductive proof theory pursues local reductions of one formal system to another which is more justified in some sense. In this direction, two specific rationales have been proposed as aims for reductive proof theory, the constructive consistency-proof rationale and the foundational reduction rationale. However, (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Prehistory of the Subsystems of Second-Order Arithmetic.Walter Dean & Sean Walsh - 2017 - Review of Symbolic Logic 10 (2):357-396.
    This paper presents a systematic study of the prehistory of the traditional subsystems of second-order arithmetic that feature prominently in the reverse mathematics program of Friedman and Simpson. We look in particular at: (i) the long arc from Poincar\'e to Feferman as concerns arithmetic definability and provability, (ii) the interplay between finitism and the formalization of analysis in the lecture notes and publications of Hilbert and Bernays, (iii) the uncertainty as to the constructive status of principles equivalent to Weak K\"onig's (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the Question of Absolute Undecidability.Peter Koellner - 2010 - In Kurt Gödel, Solomon Feferman, Charles Parsons & Stephen G. Simpson (eds.), Philosophia Mathematica. Association for Symbolic Logic. pp. 153-188.
    The paper begins with an examination of Gödel's views on absolute undecidability and related topics in set theory. These views are sharpened and assessed in light of recent developments. It is argued that a convincing case can be made for axioms that settle many of the questions undecided by the standard axioms and that in a precise sense the program for large cardinals is a complete success “below” CH. It is also argued that there are reasonable scenarios for settling CH (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  • Axioms in Mathematical Practice.Dirk Schlimm - 2013 - Philosophia Mathematica 21 (1):37-92.
    On the basis of a wide range of historical examples various features of axioms are discussed in relation to their use in mathematical practice. A very general framework for this discussion is provided, and it is argued that axioms can play many roles in mathematics and that viewing them as self-evident truths does not do justice to the ways in which mathematicians employ axioms. Possible origins of axioms and criteria for choosing axioms are also examined. The distinctions introduced aim at (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • What Kind of Logic is “Independence Friendly” Logic?Solomon Feferman - unknown
    1. Two kinds of logic. To a first approximation there are two main kinds of pursuit in logic. The first is the traditional one going back two millennia, concerned with characterizing the logically valid inferences. The second is the one that emerged most systematically only in the twentieth century, concerned with the semantics of logical operations. In the view of modern, model-theoretical eyes, the first requires the second, but not vice-versa. According to Tarski’s generally accepted account of logical consequence, inference (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  • O filozofii matematyki Imre Lakatosa.Krzysztof Wójtowicz - 2007 - Roczniki Filozoficzne 55 (1):229-247.
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Number Theory and Elementary Arithmetic.Jeremy Avigad - 2003 - Philosophia Mathematica 11 (3):257-284.
    is a fragment of first-order aritlimetic so weak that it cannot prove the totality of an iterated exponential fimction. Surprisingly, however, the theory is remarkably robust. I will discuss formal results that show that many theorems of number theory and combinatorics are derivable in elementary arithmetic, and try to place these results in a broader philosophical context.
    Direct download (17 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  • Infinitesimal Probabilities.Sylvia Wenmackers - 2016 - In Richard Pettigrew & Jonathan Weisberg (eds.), The Open Handbook of Formal Epistemology. PhilPapers Foundation. pp. 199-265.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Objects and Objectivity : Alternatives to Mathematical Realism.Ebba Gullberg - 2011 - Dissertation, Umeå Universitet
    This dissertation is centered around a set of apparently conflicting intuitions that we may have about mathematics. On the one hand, we are inclined to believe that the theorems of mathematics are true. Since many of these theorems are existence assertions, it seems that if we accept them as true, we also commit ourselves to the existence of mathematical objects. On the other hand, mathematical objects are usually thought of as abstract objects that are non-spatiotemporal and causally inert. This makes (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Might All Infinities Be the Same Size?Alexander R. Pruss - forthcoming - Australasian Journal of Philosophy:1-14.
    Cantor proved that no set has a bijection between itself and its power set. This is widely taken to have shown that there infinitely many sizes of infinite sets. The argument depends on the princip...
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • Multiverse Conceptions in Set Theory.Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo - 2015 - Synthese 192 (8):2463-2488.
    We review different conceptions of the set-theoretic multiverse and evaluate their features and strengths. In Sect. 1, we set the stage by briefly discussing the opposition between the ‘universe view’ and the ‘multiverse view’. Furthermore, we propose to classify multiverse conceptions in terms of their adherence to some form of mathematical realism. In Sect. 2, we use this classification to review four major conceptions. Finally, in Sect. 3, we focus on the distinction between actualism and potentialism with regard to the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Expressional Limits of Formal Language in the Notion of Quantum Observation.Stathis Livadas - 2012 - Axiomathes 22 (1):147-169.
    In this article I deal with the notion of observation, from a phenomenologically motivated point of view, and its representation mainly by means of the formal language of quantum mechanics. In doing so, I have taken the notion of observation in two diverse contexts. In one context as a notion related with objects of a logical-mathematical theory taken as registered facts of phenomenological perception ( Wahrnehmung ) inasmuch as this phenomenological idea can also be linked with a process of measurement (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logical Constants: A Modalist Approach 1.Otávio Bueno & Scott A. Shalkowski - 2013 - Noûs 47 (1):1-24.
  • The Role of Axioms in Mathematics.Kenny Easwaran - 2008 - Erkenntnis 68 (3):381-391.
    To answer the question of whether mathematics needs new axioms, it seems necessary to say what role axioms actually play in mathematics. A first guess is that they are inherently obvious statements that are used to guarantee the truth of theorems proved from them. However, this may neither be possible nor necessary, and it doesn’t seem to fit the historical facts. Instead, I argue that the role of axioms is to systematize uncontroversial facts that mathematicians can accept from a wide (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Constructive Hilbert Program and the Limits of Martin-Löf Type Theory.Michael Rathjen - 2005 - Synthese 147 (1):81-120.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Modal Structuralism and Reflection.Sam Roberts - 2019 - Review of Symbolic Logic 12 (4):823-860.
    Modal structuralism promises an interpretation of set theory that avoids commitment to abstracta. This article investigates its underlying assumptions. In the first part, I start by highlighting some shortcomings of the standard axiomatisation of modal structuralism, and propose a new axiomatisation I call MSST (for Modal Structural Set Theory). The main theorem is that MSST interprets exactly Zermelo set theory plus the claim that every set is in some inaccessible rank of the cumulative hierarchy. In the second part of the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical Determinacy and the Transferability of Aboutness.Stephen Pollard - 2007 - Synthese 159 (1):83-98.
    Competent speakers of natural languages can borrow reference from one another. You can arrange for your utterances of ‘Kirksville’ to refer to the same thing as my utterances of ‘Kirksville’. We can then talk about the same thing when we discuss Kirksville. In cases like this, you borrow “ aboutness ” from me by borrowing reference. Now suppose I wish to initiate a line of reasoning applicable to any prime number. I might signal my intention by saying, “Let p be (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Too Naturalist and Not Naturalist Enough: Reply to Horsten.Luca Incurvati - 2008 - Erkenntnis 69 (2):261 - 274.
    Leon Horsten has recently claimed that the class of mathematical truths coincides with the class of theorems of ZFC. I argue that the naturalistic character of Horsten’s proposal undermines his contention that this claim constitutes an analogue of a thesis that Daniel Isaacson has advanced for PA. I argue, moreover, that Horsten’s defence of his claim against an obvious objection makes use of a distinction which is not available to him given his naturalistic approach. I suggest a way out of (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Are the Barriers That Inhibit Mathematical Models of a Cyclic Universe, Which Admits Broken Symmetries, Dark Energy, and an Expanding Multiverse, Illusory?Bhupinder Singh Anand - manuscript
    We argue the thesis that if (1) a physical process is mathematically representable by a Cauchy sequence; and (2) we accept that there can be no infinite processes, i.e., nothing corresponding to infinite sequences, in natural phenomena; then (a) in the absence of an extraneous, evidence-based, proof of `closure' which determines the behaviour of the physical process in the limit as corresponding to a `Cauchy' limit; (b) the physical process must tend to a discontinuity (singularity) which has not been reflected (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • En quoi la crise des fondements des mathématiques est-elle terminée?Emmanuel Barot - 2005 - Philosophia Scientiae 9 (2):23-39.
    The « crisis in the foundations of mathematics » contributed to the advent of an axiomatic set-theoretic paradigm in terms of which the pressing questions of « Foundations of Mathematics » are still treated. Following the opposition between constructive and non-constructive philosophical and technical approaches, we provide the reader with a synthesis of these main questions, and present some minority insights which try to subvert this paradigm. We claim that the fruitful contemporary descriptive set theory, for example, actually reveals that (...)
    Direct download (3 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Axioms as Definitions: Revisiting Poincaré and Hilbert.Laura Fontanella - 2019 - Philosophia Scientae 23:167-183.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Comments on “Predicativity as a philosophical position” by G. Hellman.Solomon Feferman - 2004 - Revue Internationale de Philosophie 3:313-323.
    No categories
    Direct download (4 more)  
    Translate
     
     
    Export citation  
     
    Bookmark   2 citations  
  • On Mathematical and Religious Belief, and on Epistemic Snobbery.Silvia Jonas - 2016 - Philosophy 91 (1):69-92.
    In this paper, I argue that religious belief is epistemically equivalent to mathematical belief. Abstract beliefs don't fall under ‘naive’, evidence-based analyses of rationality. Rather, their epistemic permissibility depends, I suggest, on four criteria: predictability, applicability, consistency, and immediate acceptability of the fundamental axioms. The paper examines to what extent mathematics meets these criteria, juxtaposing the results with the case of religion. My argument is directed against a widespread view according to which belief in mathematics is clearly rationally acceptable whereas (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • What is so Special with the Powerset Operation?Athanassios Tzouvaras - 2004 - Archive for Mathematical Logic 43 (6):723-737.
    The powerset operator, , is an operator which (1) sends sets to sets,(2) is defined by a positive formula and (3) raises the cardinality of its argument, i.e., | (x)|>|x|. As a consequence of (3), has a proper class as least fixed point (the universe itself). In this paper we address the questions: (a) How does contribute to the generation of the class of all positive operators? (b) Are there other operators with the above properties, “independent” of ? Concerning (a) (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Proof Theory in Philosophy of Mathematics.Andrew Arana - 2010 - Philosophy Compass 5 (4):336-347.
    A variety of projects in proof theory of relevance to the philosophy of mathematics are surveyed, including Gödel's incompleteness theorems, conservation results, independence results, ordinal analysis, predicativity, reverse mathematics, speed-up results, and provability logics.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • What New Axioms Could Not Be.Kai Hauser - 2002 - Dialectica 56 (2):109–124.
    The paper exposes the philosophical and mathematical flaws in an attempt to settle the continuum problem by a new class of axioms based on probabilistic reasoning. I also examine the larger proposal behind this approach, namely the introduction of new primitive notions that would supersede the set theoretic foundation of mathematics.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Foundation of Mathematics Between Theory and Practice.Giorgio Venturi - 2014 - Philosophia Scientae 18:4580.
  • Gauss' Quadratic Reciprocity Theorem and Mathematical Fruitfulness.Audrey Yap - 2011 - Studies in History and Philosophy of Science Part A 42 (3):410-415.
  • What New Axioms Could Not Be.Kai Hauser - 2002 - Dialectica 56 (2):109-124.
    The paper exposes the philosophical and mathematical flaws in an attempt to settle the continuum problem by a new class of axioms based on probabilistic reasoning. I also examine the larger proposal behind this approach, namely the introduction of new primitive notions that would supersede the set theoretic foundation of mathematics.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Intuition and Its Object.Kai Hauser - 2015 - Axiomathes 25 (3):253-281.
    The view that mathematics deals with ideal objects to which we have epistemic access by a kind of perception has troubled many thinkers. Using ideas from Husserl’s phenomenology, I will take a different look at these matters. The upshot of this approach is that there are non-material objects and that they can be recognized in a process very closely related to sense perception. In fact, the perception of physical objects may be regarded as a special case of this more universal (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark