Switch to: References

Add citations

You must login to add citations.
  1. The Physics of God and the Quantum Gravity Theory of Everything.James Redford - 2021 - In The Physics of God and the Quantum Gravity Theory of Everything: And Other Selected Works. Chișinău, Moldova: Eliva Press. pp. 1-186.
    Analysis is given of the Omega Point cosmology, an extensively peer-reviewed proof (i.e., mathematical theorem) published in leading physics journals by professor of physics and mathematics Frank J. Tipler, which demonstrates that in order for the known laws of physics to be mutually consistent, the universe must diverge to infinite computational power as it collapses into a final cosmological singularity, termed the Omega Point. The theorem is an intrinsic component of the Feynman-DeWitt-Weinberg quantum gravity/Standard Model Theory of Everything (TOE) describing (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Философия на квантовата информация.Vasil Penchev - 2009 - Sofia: BAS: IPhR.
    The book is devoted to the contemporary stage of quantum mechanics – quantum information, and especially to its philosophical interpretation and comprehension: the first one of a series monographs about the philosophy of quantum information. The second will consider Be l l ’ s inequalities, their modified variants and similar to them relations. The beginning of quantum information was in the thirties of the last century. Its speed development has started over the last two decades. The main phenomenon is entanglement. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • The Mind and the Physical World: A Psychologist's Exploration of Modern Physical Theory.Douglas Michael Snyder - 1995 - Los Angeles, USA: Tailor Press.
    The mind of man is central to the structure and functioning of the physical world. Modern physical theory indicates that the mind stands in a relationship of equals to the physical world. Both are fundamental, neither can be reduced to the other, and both require each other for their full understanding. This thesis is at odds with the view of the universe found in Newtonian mechanics as well as the generally held view among contemporary physicists of modern physical theory. Since (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Quantum computation, quantum theory and AI.Mingsheng Ying - 2010 - Artificial Intelligence 174 (2):162-176.
  • Engineering Entanglement, Conceptualizing Quantum Information.Chen-Pang Yeang - 2011 - Annals of Science 68 (3):325-350.
    Summary Proposed by Einstein, Podolsky, and Rosen (EPR) in 1935, the entangled state has played a central part in exploring the foundation of quantum mechanics. At the end of the twentieth century, however, some physicists and mathematicians set aside the epistemological debates associated with EPR and turned it from a philosophical puzzle into practical resources for information processing. This paper examines the origin of what is known as quantum information. Scientists had considered making quantum computers and employing entanglement in communications (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Theory of Quantum Computation and Philosophy of Mathematics. Part II.Krzysztof Wójtowicz - forthcoming - Logic and Logical Philosophy:1.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Theory of quantum computation and philosophy of mathematics. Part I.Krzysztof Wójtowicz - 2009 - Logic and Logical Philosophy 18 (3-4):313-332.
    The aim of this paper is to present some basic notions of the theory of quantum computing and to compare them with the basic notions of the classical theory of computation. I am convinced, that the results of quantum computation theory (QCT) are not only interesting in themselves, but also should be taken into account in discussions concerning the nature of mathematical knowledge. The philosophical discussion will however be postponed to another paper. QCT seems not to be well-known among philosophers (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  • Epistemic Horizons and the Foundations of Quantum Mechanics.Jochen Szangolies - 2018 - Foundations of Physics 48 (12):1669-1697.
    In-principle restrictions on the amount of information that can be gathered about a system have been proposed as a foundational principle in several recent reconstructions of the formalism of quantum mechanics. However, it seems unclear precisely why one should be thus restricted. We investigate the notion of paradoxical self-reference as a possible origin of such epistemic horizons by means of a fixed-point theorem in Cartesian closed categories due to Lawvere that illuminates and unifies the different perspectives on self-reference.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum algorithms for simulation of quantum chemistry problems by quantum computers: an appraisal.Smriti Sharma - 2022 - Foundations of Chemistry 24 (2):263-276.
    The ideas of quantum simulation and advances in quantum algorithms to solve quantum chemistry problems have been discussed. Theoretical proposals and experimental investigations both have been studied to gauge the extent to which quantum computation has been applied to solve quantum chemical problems till date. The distinctive features and limitations of the application of quantum simulation on chemical systems and current approaches to define and improve upon standard quantum algorithms have been studied in detail. The possibility and consequences of designing (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • The scope of Turing's analysis of effective procedures.Jeremy Seligman - 2002 - Minds and Machines 12 (2):203-220.
    Turing's (1936) analysis of effective symbolic procedures is a model of conceptual clarity that plays an essential role in the philosophy of mathematics. Yet appeal is often made to the effectiveness of human procedures in other areas of philosophy. This paper addresses the question of whether Turing's analysis can be applied to a broader class of effective human procedures. We use Sieg's (1994) presentation of Turing's Thesis to argue against Cleland's (1995) objections to Turing machines and we evaluate her proposal (...)
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Zwischen berechenbarkeit und nichtberechenbarkeit. Die thematisierung der berechenbarkeit in der aktuellen physik komplexer systeme.Jan C. Schmidt - 2003 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 34 (1):99-131.
    Between Calculability and Non-Calculability. Issues of Calculability and Predictability in the Physics of Complex Systems. The ability to predict has been a very important qualifier of what constitutes scientific knowledge, ever since the successes of Babylonian and Greek astronomy. More recent is the general appreciation of the fact that in the presence of deterministic chaos, predictability is severely limited (the so-called ‘butterfly effect’): Nearby trajectories diverge during time evolution; small errors typically grow exponentially with time. The system obeys deterministic laws (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • Toward a semantic general theory of everything.Alexei V. Samsonovich, Rebecca F. Goldin & Giorgio A. Ascoli - 2010 - Complexity 15 (4):NA-NA.
  • Ethics of Quantum Computing: an Outline.Luca M. Possati - 2023 - Philosophy and Technology 36 (3):1-21.
    This paper intends to contribute to the emerging literature on the ethical problems posed by quantum computing and quantum technologies in general. The key ethical questions are as follows: Does quantum computing pose new ethical problems, or are those raised by quantum computing just a different version of the same ethical problems raised by other technologies, such as nanotechnologies, nuclear plants, or cloud computing? In other words, what is new in quantum computing from an ethical point of view? The paper (...)
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • Could robots become authentic companions in nursing care?Theodore A. Metzler, Lundy M. Lewis & Linda C. Pope - 2016 - Nursing Philosophy 17 (1):36-48.
    Creating android and humanoid robots to furnish companionship in the nursing care of older people continues to attract substantial development capital and research. Some people object, though, that machines of this kind furnish human–robot interaction characterized by inauthentic relationships. In particular, robotic and artificial intelligence (AI) technologies have been charged with substituting mindless mimicry of human behaviour for the real presence of conscious caring offered by human nurses. When thus viewed as deceptive, the robots also have prompted corresponding concerns regarding (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Three measurement problems.Tim Maudlin - 1995 - Topoi 14 (1):7-15.
    The aim of this essay is to distinguish and analyze several difficulties confronting attempts to reconcile the fundamental quantum mechanical dynamics with Born''s rule. It is shown that many of the proposed accounts of measurement fail at least one of the problems. In particular, only collapse theories and hidden variables theories have a chance of succeeding, and, of the latter, the modal interpretations fail. Any real solution demands new physics.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   102 citations  
  • Alan Turing and the origins of complexity.Miguel Angel Martin-Delgado - 2013 - Arbor 189 (764):a083.
  • Abduction: The Double Change.Solomon Marcus - 2005 - Semiotica 2005 (153 - 1/4):287-298.
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Is the brain a quantum computer?Abninder Litt, Chris Eliasmith, Frederick W. Kroon, Steven Weinstein & Paul Thagard - 2006 - Cognitive Science 30 (3):593-603.
    We argue that computation via quantum mechanical processes is irrelevant to explaining how brains produce thought, contrary to the ongoing speculations of many theorists. First, quantum effects do not have the temporal properties required for neural information processing. Second, there are substantial physical obstacles to any organic instantiation of quantum computation. Third, there is no psychological evidence that such mental phenomena as consciousness and mathematical thinking require explanation via quantum theory. We conclude that understanding brain function is unlikely to require (...)
    Direct download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Quantum hypercomputation.Tien D. Kieu - 2002 - Minds and Machines 12 (4):541-561.
    We explore the possibility of using quantum mechanical principles for hypercomputation through the consideration of a quantum algorithm for computing the Turing halting problem. The mathematical noncomputability is compensated by the measurability of the values of quantum observables and of the probability distributions for these values. Some previous no-go claims against quantum hypercomputation are then reviewed in the light of this new positive proposal.
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Speed of computation and simulation.Subhash C. Kak - 1996 - Foundations of Physics 26 (10):1375-1386.
    This paper examines several issues related to information, speed of computation, and simulation of a physical process. It is argued that mental processes proceed at a rate close to the optimal based on thermodynamic considerations. Problems related to the simulation of a quantum mechanical system on a computer are reviewed. Parallels are drawn between biological and adaptive quantum systems.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Information, physics, and computation.Subhash C. Kak - 1996 - Foundations of Physics 26 (1):127-137.
    This paper presents several observations on the connections between information, physics, and computation. In particular, the computing power of quantum computers is examined. Quantum theory is characterized by superimposed states and nonlocal interactions. It is argued that recently studied quantum computers, which are based on local interactions, cannot simulate quantum physics.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quantum Walks in Brain Microtubules—A Biomolecular Basis for Quantum Cognition?Stuart Hameroff - 2014 - Topics in Cognitive Science 6 (1):91-97.
    Cognitive decisions are best described by quantum mathematics. Do quantum information devices operate in the brain? What would they look like? Fuss and Navarro () describe quantum lattice registers in which quantum superpositioned pathways interact (compute/integrate) as ‘quantum walks’ akin to Feynman's path integral in a lattice (e.g. the ‘Feynman quantum chessboard’). Simultaneous alternate pathways eventually reduce (collapse), selecting one particular pathway in a cognitive decision, or choice. This paper describes how quantum walks in a Feynman chessboard are conceptually identical (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Quantum algorithms: Philosophical lessons.Amit Hagar - 2007 - Minds and Machines 17 (2):233-247.
    I discuss the philosophical implications that the rising new science of quantum computing may have on the philosophy of computer science. While quantum algorithms leave the notion of Turing-Computability intact, they may re-describe the abstract space of computational complexity theory hence militate against the autonomous character of some of the concepts and categories of computer science.
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Quantum hypercomputation—hype or computation?Amit Hagar & Alex Korolev - 2007 - Philosophy of Science 74 (3):347-363.
    A recent attempt to compute a (recursion‐theoretic) noncomputable function using the quantum adiabatic algorithm is criticized and found wanting. Quantum algorithms may outperform classical algorithms in some cases, but so far they retain the classical (recursion‐theoretic) notion of computability. A speculation is then offered as to where the putative power of quantum computers may come from.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Philosophy enters the optics laboratory: Bell's theorem and its first experimental tests.Olival Freire - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (4):577-616.
  • Philosophy enters the optics laboratory: Bell's theorem and its first experimental tests (1965–1982).Olival Freire - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (4):577-616.
  • Information and quantum theory.Olival Freire Junior & Ileana Maria Greca - 2013 - Scientiae Studia 11 (1):11-33.
    A pesquisa em informação quântica sugere uma íntima conexão entre o conceito de informação e a teoria quântica, mas essa conexão envolve nuances cuja análise é o objeto deste trabalho. A sabedoria comum nesse campo divide-se em duas grandes áreas, não excludentes entre si. Há os que são movidos pela possibilidade de uso da teoria quântica em um novo campo, o da computação, independentemente do esclarecimento de seus fundamentos, aqui incluído o conceito de "informação". Alguns consideram que estamos diante de (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  • Beyond Physics? On the Prospects of Finding a Meaningful Oracle.Taner Edis & Maarten Boudry - 2014 - Foundations of Science 19 (4):403-422.
    Certain enterprises at the fringes of science, such as intelligent design creationism, claim to identify phenomena that go beyond not just our present physics but any possible physical explanation. Asking what it would take for such a claim to succeed, we introduce a version of physicalism that formulates the proposition that all available data sets are best explained by combinations of “chance and necessity”—algorithmic rules and randomness. Physicalism would then be violated by the existence of oracles that produce certain kinds (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Scientists and citizens: getting to quantum technologies.David P. DiVincenzo - 2017 - Ethics and Information Technology 19 (4):247-251.
    I will discuss the history and prospects for new machines and instruments as anticipated in the newly announced EU Flagship for Quantum Technology. The program of Richard Feynman, as announced almost 60 years ago, to go to the “bottom” in the miniaturization of information-processing technology, has come to fruition, and a set of well-defined technologies, in the areas of quantum computing, quantum simulation, quantum sensing and metrology, and quantum communication, have emerged. I give a perspective on the sometimes abstruse significance (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum mechanics and computation.Bart D’Hooghe & Jaroslaw Pykacz - 2004 - Foundations of Science 9 (4):387-404.
    In quantum computation non classical features such as superposition states and entanglement are used to solve problems in new ways, impossible on classical digital computers.We illustrate by Deutsch algorithm how a quantum computer can use superposition states to outperform any classical computer. We comment on the view of a quantum computer as a massive parallel computer and recall Amdahls law for a classical parallel computer. We argue that the view on quantum computation as a massive parallel computation disregards the presence (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • The potential impact of quantum computers on society.Ronald de Wolf - 2017 - Ethics and Information Technology 19 (4):271-276.
    This paper considers the potential impact that the nascent technology of quantum computing may have on society. It focuses on three areas: cryptography, optimization, and simulation of quantum systems. We will also discuss some ethical aspects of these developments, and ways to mitigate the risks.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Computing Mechanisms Without Proper Functions.Joe Dewhurst - 2018 - Minds and Machines 28 (3):569-588.
    The aim of this paper is to begin developing a version of Gualtiero Piccinini’s mechanistic account of computation that does not need to appeal to any notion of proper functions. The motivation for doing so is a general concern about the role played by proper functions in Piccinini’s account, which will be evaluated in the first part of the paper. I will then propose a potential alternative approach, where computing mechanisms are understood in terms of Carl Craver’s perspectival account of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  • Confirmation via Analogue Simulation: What Dumb Holes Could Tell Us about Gravity.Radin Dardashti, Karim P. Y. Thébault & Eric Winsberg - 2017 - British Journal for the Philosophy of Science 68 (1).
    In this article we argue for the existence of ‘analogue simulation’ as a novel form of scientific inference with the potential to be confirmatory. This notion is distinct from the modes of analogical reasoning detailed in the literature, and draws inspiration from fluid dynamical ‘dumb hole’ analogues to gravitational black holes. For that case, which is considered in detail, we defend the claim that the phenomena of gravitational Hawking radiation could be confirmed in the case that its counterpart is detected (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  • Artificial intelligence for education: Knowledge and its assessment in AI-enabled learning ecologies.Bill Cope, Mary Kalantzis & Duane Searsmith - 2021 - Educational Philosophy and Theory 53 (12):1229-1245.
    Over the past ten years, we have worked in a collaboration between educators and computer scientists at the University of Illinois to imagine futures for education in the context of what is loosely called “artificial intelligence.” Unhappy with the first generation of digital learning environments, our agenda has been to design alternatives and research their implementation. Our starting point has been to ask, what is the nature of machine intelligence, and what are its limits and potentials in education? This paper (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • The machine as data: a computational view of emergence and definability.S. Barry Cooper - 2015 - Synthese 192 (7):1955-1988.
    Turing’s paper on computable numbers has played its role in underpinning different perspectives on the world of information. On the one hand, it encourages a digital ontology, with a perceived flatness of computational structure comprehensively hosting causality at the physical level and beyond. On the other, it can give an insight into the way in which higher order information arises and leads to loss of computational control—while demonstrating how the control can be re-established, in special circumstances, via suitable type reductions. (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computing the uncomputable.John L. Casti - 1997 - Complexity 2 (3):7-12.
  • Quantum metaphysical indeterminacy.Claudio Calosi & Jessica Wilson - 2019 - Philosophical Studies 176 (10):2599–2627.
    On many currently live interpretations, quantum mechanics violates the classical supposition of value definiteness, according to which the properties of a given particle or system have precise values at all times. Here we consider whether either metaphysical supervaluationist or determinable-based approaches to metaphysical indeterminacy can accommodate quantum metaphysical indeterminacy (QMI). We start by discussing the standard theoretical indicator of QMI, and distinguishing three seemingly different sources of QMI (S1). We then show that previous arguments for the conclusion that metaphysical supervaluationism (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   43 citations  
  • Incompleteness, complexity, randomness and beyond.Cristian S. Calude - 2002 - Minds and Machines 12 (4):503-517.
    Gödel's Incompleteness Theorems have the same scientific status as Einstein's principle of relativity, Heisenberg's uncertainty principle, and Watson and Crick's double helix model of DNA. Our aim is to discuss some new faces of the incompleteness phenomenon unveiled by an information-theoretic approach to randomness and recent developments in quantum computing.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  • Multimodal Incompleteness Under Weak Negations.Juliana Bueno-Soler - 2013 - Logica Universalis 7 (1):21-31.
    This paper shows that some classes of multimodal paraconsistent logics endowed with weak forms of negation are incompletable with respect to Kripke semantics. The reach of such incompleteness is discussed, and we argue that this shortcoming, more than just a logical predicament, may be relevant for attempts to characterize quantum logics and to handle quantum information and quantum computation.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum computation and the untenability of a “No fundamental mentality” constraint on physicalism.Christopher Devlin Brown - 2022 - Synthese 201 (1):1-18.
    Though there is yet no consensus on the right way to understand ‘physicalism’, most philosophers agree that, regardless of whatever else is required, physicalism cannot be true if there exists fundamental mentality. I will follow Jessica Wilson (Philosophical Studies 131:61–99, 2006) in calling this the 'No Fundamental Mentality' (NFM) constraint on physicalism. Unfortunately for those who wish to constrain physicalism in this way, NFM admits of a counterexample: an artificially intelligent quantum computer which employs quantum properties as part of its (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Toward a formal philosophy of hypercomputation.Selmer Bringsjord & Michael Zenzen - 2002 - Minds and Machines 12 (2):241-258.
    Does what guides a pastry chef stand on par, from the standpoint of contemporary computer science, with what guides a supercomputer? Did Betty Crocker, when telling us how to bake a cake, provide an effective procedure, in the sense of `effective' used in computer science? According to Cleland, the answer in both cases is ``Yes''. One consequence of Cleland's affirmative answer is supposed to be that hypercomputation is, to use her phrase, ``theoretically viable''. Unfortunately, though we applaud Cleland's ``gadfly philosophizing'' (...)
    Direct download (15 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • An Argument for P = NP.Selmer Bringsjord - 2017 - Minds and Machines 27 (4):663-672.
    I articulate a novel modal argument for P=NP.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Quantum Probability Perspective on Borderline Vagueness.Reinhard Blutner, Emmanuel M. Pothos & Peter Bruza - 2013 - Topics in Cognitive Science 5 (4):711-736.
    The term “vagueness” describes a property of natural concepts, which normally have fuzzy boundaries, admit borderline cases, and are susceptible to Zeno's sorites paradox. We will discuss the psychology of vagueness, especially experiments investigating the judgment of borderline cases and contradictions. In the theoretical part, we will propose a probabilistic model that describes the quantitative characteristics of the experimental finding and extends Alxatib's and Pelletier's () theoretical analysis. The model is based on a Hopfield network for predicting truth values. Powerful (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • Quantum Walks, Weyl Equation and the Lorentz Group.Paolo Perinotti, Giacomo Mauro D’Ariano & Alessandro Bisio - 2017 - Foundations of Physics 47 (8):1065-1076.
    Quantum cellular automata and quantum walks provide a framework for the foundations of quantum field theory, since the equations of motion of free relativistic quantum fields can be derived as the small wave-vector limit of quantum automata and walks starting from very general principles. The intrinsic discreteness of this framework is reconciled with the continuous Lorentz symmetry by reformulating the notion of inertial reference frame in terms of the constants of motion of the quantum walk dynamics. In particular, among the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • New mathematics for old physics: The case of lattice fluids.Anouk Barberousse & Cyrille Imbert - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (3):231-241.
    We analyze the effects of the introduction of new mathematical tools on an old branch of physics by focusing on lattice fluids, which are cellular automata -based hydrodynamical models. We examine the nature of these discrete models, the type of novelty they bring about within scientific practice and the role they play in the field of fluid dynamics. We critically analyze Rohrlich's, Fox Keller's and Hughes' claims about CA-based models. We distinguish between different senses of the predicates “phenomenological” and “theoretical” (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quantum Information Theory and the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2013 - Oxford, GB: Oxford University Press.
    Christopher G. Timpson provides the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. He argues for an ontologically deflationary account of the nature of quantum information, which is grounded in a revisionary analysis of the concepts of information.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   55 citations  
  • Quantum Information Theory & the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2004 - Oxford, GB: Oxford University Press.
    Quantum Information Theory and the Foundations of Quantum Mechanics is a conceptual analysis of one of the most prominent and exciting new areas of physics, providing the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. -/- Beginning from a careful, revisionary, analysis of the concepts of information in the everyday and classical information-theory settings, Christopher G. Timpson argues for an ontologically deflationary account of the nature of quantum information. (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   47 citations  
  • Circular Proofs in Proof-theoretic Simulation of Belousov-Zhabotinsky Reaction.Andrew Schumann - 2009 - Studies in Logic, Grammar and Rhetoric 17 (30).
    No categories
     
    Export citation  
     
    Bookmark  
  • Computation in physical systems.Gualtiero Piccinini - 2010 - Stanford Encyclopedia of Philosophy.
  • Quantum computing.Amit Hagar & Michael Cuffaro - 2019 - Stanford Encyclopedia of Philosophy.
    Combining physics, mathematics and computer science, quantum computing and its sister discipline of quantum information have developed in the past few decades from visionary ideas to two of the most fascinating areas of quantum theory. General interest and excitement in quantum computing was initially triggered by Peter Shor (1994) who showed how a quantum algorithm could exponentially “speed-up” classical computation and factor large numbers into primes far more efficiently than any (known) classical algorithm. Shor’s algorithm was soon followed by several (...)
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations