Switch to: References

Add citations

You must login to add citations.
  1. Co-Analytic Mad Families and Definable Wellorders.Vera Fischer, Sy David Friedman & Yurii Khomskii - 2013 - Archive for Mathematical Logic 52 (7-8):809-822.
    We show that the existence of a ${\Pi^1_1}$ -definable mad family is consistent with the existence of a ${\Delta^{1}_{3}}$ -definable well-order of the reals and ${\mathfrak{b}=\mathfrak{c}=\aleph_3}$.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Cardinal Characteristics, Projective Wellorders and Large Continuum.Vera Fischer, Sy David Friedman & Lyubomyr Zdomskyy - 2013 - Annals of Pure and Applied Logic 164 (7-8):763-770.
    We extend the work of Fischer et al. [6] by presenting a method for controlling cardinal characteristics in the presence of a projective wellorder and 2ℵ0>ℵ2. This also answers a question of Harrington [9] by showing that the existence of a Δ31 wellorder of the reals is consistent with Martinʼs axiom and 2ℵ0=ℵ3.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Σ12 and Π11 Mad Families.Asger Törnquist - 2009 - Journal of Symbolic Logic 78 (4):1181-1182.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Projective Wellorders and Mad Families with Large Continuum.Vera Fischer, Sy David Friedman & Lyubomyr Zdomskyy - 2011 - Annals of Pure and Applied Logic 162 (11):853-862.
    We show that is consistent with the existence of a -definable wellorder of the reals and a -definable ω-mad subfamily of [ω]ω.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Mad Families Constructed From Perfect Almost Disjoint Families.Jörg Brendle & Yurii Khomskii - 2013 - Journal of Symbolic Logic 78 (4):1164-1180.
  • Σ1 2 and Π1 1 Mad Families.Asger Törnquist - 2013 - Journal of Symbolic Logic 78 (4):1181-1182.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations