Switch to: References

Add citations

You must login to add citations.
  1. Forcing and the Universe of Sets: Must We Lose Insight?Neil Barton - 2020 - Journal of Philosophical Logic 49 (4):575-612.
    A central area of current philosophical debate in the foundations of mathematics concerns whether or not there is a single, maximal, universe of set theory. Universists maintain that there is such a universe, while Multiversists argue that there are many universes, no one of which is ontologically privileged. Often forcing constructions that add subsets to models are cited as evidence in favour of the latter. This paper informs this debate by analysing ways the Universist might interpret this discourse that seems (...)
    Direct download (5 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • What is the Benacerraf Problem?Justin Clarke-Doane - 2017 - In Fabrice Pataut (ed.), New Perspectives on the Philosophy of Paul Benacerraf: Truth, Objects, Infinity. Springer Verlag.
    In "Mathematical Truth", Paul Benacerraf articulated an epistemological problem for mathematical realism. His formulation of the problem relied on a causal theory of knowledge which is now widely rejected. But it is generally agreed that Benacerraf was onto a genuine problem for mathematical realism nevertheless. Hartry Field describes it as the problem of explaining the reliability of our mathematical beliefs, realistically construed. In this paper, I argue that the Benacerraf Problem cannot be made out. There simply is no intelligible problem (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   39 citations  
  • Epistemic Modality, Mind, and Mathematics.Hasen Khudairi - 2017 - Gutenberg.
    This book concerns the foundations of epistemic modality. I examine the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how phenomenal consciousness and gradational possible-worlds models in Bayesian perceptual psychology relate to epistemic modal space. The book demonstrates, then, how epistemic modality relates to the computational theory of mind; metaphysical modality; deontic modality; the types of mathematical modality; to the epistemic status (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Multiversism and Concepts of Set: How Much Relativism is Acceptable?Neil Barton - 2016 - In Francesca Boccuni & Andrea Sereni (eds.), Objectivity, Realism, and Proof. FilMat Studies in the Philosophy of Mathematics. Springer. pp. 189-209.
    Multiverse Views in set theory advocate the claim that there are many universes of sets, no-one of which is canonical, and have risen to prominence over the last few years. One motivating factor is that such positions are often argued to account very elegantly for technical practice. While there is much discussion of the technical aspects of these views, in this paper I analyse a radical form of Multiversism on largely philosophical grounds. Of particular importance will be an account of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Infinite Forcing and the Generic Multiverse.Giorgio Venturi - 2020 - Studia Logica 108 (2):277-290.
    In this article we present a technique for selecting models of set theory that are complete in a model-theoretic sense. Specifically, we will apply Robinson infinite forcing to the collections of models of ZFC obtained by Cohen forcing. This technique will be used to suggest a unified perspective on generic absoluteness principles.
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Set-Theoretic Pluralism and the Benacerraf Problem.Justin Clarke-Doane - 2020 - Philosophical Studies 177 (7):2013-2030.
    Set-theoretic pluralism is an increasingly influential position in the philosophy of set theory (Balaguer [1998], Linksy and Zalta [1995], Hamkins [2012]). There is considerable room for debate about how best to formulate set-theoretic pluralism, and even about whether the view is coherent. But there is widespread agreement as to what there is to recommend the view (given that it can be formulated coherently). Unlike set-theoretic universalism, set-theoretic pluralism affords an answer to Benacerraf’s epistemological challenge. The purpose of this paper is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Notion of Explanation in Gödel’s Philosophy of Mathematics.Krzysztof Wójtowicz - 2019 - Studia Semiotyczne—English Supplement 30:85-106.
    The article deals with the question of in which sense the notion of explanation can be applied to Kurt Gödel’s philosophy of mathematics. Gödel, as a mathematical realist, claims that in mathematics we are dealing with facts that have an objective character. One of these facts is the solvability of all well-formulated mathematical problems—and this fact requires a clarification. The assumptions on which Gödel’s position is based are: metaphysical realism: there is a mathematical universe, it is objective and independent of (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Kategoria wyjaśniania a filozofia matematyki Gödla.Krzysztof Wójtowicz - 2018 - Studia Semiotyczne 32 (2):107-129.
    Artykuł dotyczy zagadnienia, w jakim sensie można stosować kategorię wyjaśnienia do interpretacji filozofii matematyki Kurta Gödla. Gödel – jako realista matematyczny – twierdzi bowiem, że w wypadku matematyki mamy do czynienia z niezależnymi od nas faktami. Jednym z owych faktów jest właśnie rozwiązywalność wszystkich dobrze postawionych problemów matematycznych – i ten fakt domaga się wyjaśnienia. Kluczem do zrozumienia stanowiska Gödla jest identyfikacja założeń, na których się opiera: metafizyczny realizm: istnieje uniwersum matematyczne, ma ono charakter obiektywny, niezależny od nas; optymizm epistemologiczny: (...)
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • A Naturalistic Justification of the Generic Multiverse with a Core.Matteo de Ceglie - 2018 - Contributions of the Austrian Ludwig Wittgenstein Society 26:34-36.
    In this paper, I argue that a naturalist approach in philosophy of mathematics justifies a pluralist conception of set theory. For the pluralist, there is not a Single Universe, but there is rather a Multiverse, composed by a plurality of universes generated by various set theories. In order to justify a pluralistic approach to sets, I apply the two naturalistic principles developed by Penelope Maddy (cfr. Maddy (1997)), UNIFY and MAXIMIZE, and analyze through them the potential of the set theoretic (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  • The Ethics–Mathematics Analogy.Justin Clarke‐Doane - 2020 - Philosophy Compass 15 (1).
    Ethics and mathematics have long invited comparisons. On the one hand, both ethical and mathematical propositions can appear to be knowable a priori, if knowable at all. On the other hand, mathematical propositions seem to admit of proof, and to enter into empirical scientific theories, in a way that ethical propositions do not. In this article, I discuss apparent similarities and differences between ethical (i.e., moral) and mathematical knowledge, realistically construed -- i.e., construed as independent of human mind and languages. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Objectivity and Reliability.Justin Clarke-Doane - 2017 - Canadian Journal of Philosophy 47 (6):841-855.
    Scanlon’s Being Realistic about Reasons (BRR) is a beautiful book – sleek, sophisticated, and programmatic. One of its key aims is to demystify knowledge of normative and mathematical truths. In this article, I develop an epistemological problem that Scanlon fails to explicitly address. I argue that his “metaphysical pluralism” can be understood as a response to that problem. However, it resolves the problem only if it undercuts the objectivity of normative and mathematical inquiry.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Modal Cognitivism and Modal Expressivism.Hasen Khudairi - manuscript
    This paper aims to provide a mathematically tractable background against which to model both modal cognitivism and modal expressivism. I argue that epistemic modal algebras comprise a materially adequate fragment of the language of thought, and endeavor to show how such algebras provide the resources necessary to resolve Russell's paradox of propositions. I demonstrate, then, how modal expressivism can be regimented by modal coalgebraic automata, to which the above epistemic modal algebras are dually isomorphic. I examine, in particular, the virtues (...)
    No categories
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Forms of Luminosity.Hasen Khudairi - 2017
    This dissertation concerns the foundations of epistemic modality. I examine the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The dissertation demonstrates how phenomenal consciousness and gradational possible-worlds models in Bayesian perceptual psychology relate to epistemic modal space. The dissertation demonstrates, then, how epistemic modality relates to the computational theory of mind; metaphysical modality; deontic modality; logical modality; the types of mathematical modality; to the (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Mathematical and Moral Disagreement.Silvia Jonas - 2020 - Philosophical Quarterly 70 (279):302-327.
    The existence of fundamental moral disagreements is a central problem for moral realism and has often been contrasted with an alleged absence of disagreement in mathematics. However, mathematicians do in fact disagree on fundamental questions, for example on which set-theoretic axioms are true, and some philosophers have argued that this increases the plausibility of moral vis-à-vis mathematical realism. I argue that the analogy between mathematical and moral disagreement is not as straightforward as those arguments present it. In particular, I argue (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • What If? The Exploration of an Idea.Graham Priest - 2017 - Australasian Journal of Logic 14 (1).
    A crucial question here is what, exactly, the conditional in the naive truth/set comprehension principles is. In 'Logic of Paradox', I outlined two options. One is to take it to be the material conditional of the extensional paraconsistent logic LP. Call this "Strategy 1". LP is a relatively weak logic, however. In particular, the material conditional does not detach. The other strategy is to take it to be some detachable conditional. Call this "Strategy 2". The aim of the present essay (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Structure and Categoricity: Determinacy of Reference and Truth Value in the Philosophy of Mathematics.Tim Button & Sean Walsh - 2016 - Philosophia Mathematica 24 (3):283-307.
    This article surveys recent literature by Parsons, McGee, Shapiro and others on the significance of categoricity arguments in the philosophy of mathematics. After discussing whether categoricity arguments are sufficient to secure reference to mathematical structures up to isomorphism, we assess what exactly is achieved by recent ‘internal’ renditions of the famous categoricity arguments for arithmetic and set theory.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Set-Theoretic Foundations.Penelope Maddy - 2016 - In Andrés Eduardo Caicedo, James Cummings, Peter Koellner & Paul B. Larson (eds.). American Mathematical Society.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Modal Objectivity.Clarke-Doane Justin - forthcoming - Noûs.
    It is widely agreed that the intelligibility of modal metaphysics has been vindicated. Quine's arguments to the contrary supposedly confused analyticity with metaphysical necessity, and rigid with non-rigid designators.2 But even if modal metaphysics is intelligible, it could be misconceived. It could be that metaphysical necessity is not absolute necessity – the strictest real notion of necessity – and that no proposition of traditional metaphysical interest is necessary in every real sense. If there were nothing otherwise “uniquely metaphysically significant” about (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Ipotesi del Continuo.Claudio Ternullo - 2017 - Aphex 16.
    L’Ipotesi del Continuo, formulata da Cantor nel 1878, è una delle congetture più note della teoria degli insiemi. Il Problema del Continuo, che ad essa è collegato, fu collocato da Hilbert, nel 1900, fra i principali problemi insoluti della matematica. A seguito della dimostrazione di indipendenza dell’Ipotesi del Continuo dagli assiomi della teoria degli insiemi, lo status attuale del problema è controverso. In anni più recenti, la ricerca di una soluzione del Problema del Continuo è stata anche una delle ragioni (...)
    Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Objectivity in Ethics and Mathematics.Justin Clarke-Doane - 2015 - Proceedings of the Aristotelian Society: The Virtual Issue 3.
    How do axioms, or first principles, in ethics compare to those in mathematics? In this companion piece to G.C. Field's 1931 "On the Role of Definition in Ethics", I argue that there are similarities between the cases. However, these are premised on an assumption which can be questioned, and which highlights the peculiarity of normative inquiry.
    Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark   3 citations  
  • Objectivity and Evaluation.Justin Clarke-Doane - forthcoming - In Christopher Cowie & Richard Rowland (eds.), Companions in Guilt Arguments in Metaethics.
    I this article, I introduce the notion of pluralism about an area, and use it to argue that the questions at the center of our normative lives are not settled by the facts -- even the normative facts. One upshot of the discussion is that the concepts of realism and objectivity, which are widely identified, are actually in tension. Another is that the concept of objectivity, not realism, should take center stage.
    Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Maximality Principles in Set Theory.Luca Incurvati - 2017 - Philosophia Mathematica 25 (2):159-193.
    In set theory, a maximality principle is a principle that asserts some maximality property of the universe of sets or some part thereof. Set theorists have formulated a variety of maximality principles in order to settle statements left undecided by current standard set theory. In addition, philosophers of mathematics have explored maximality principles whilst attempting to prove categoricity theorems for set theory or providing criteria for selecting foundational theories. This article reviews recent work concerned with the formulation, investigation and justification (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Richness and Reflection.Neil Barton - 2016 - Philosophia Mathematica 24 (3):330-359.
    A pervasive thought in contemporary philosophy of mathematics is that in order to justify reflection principles, one must hold universism: the view that there is a single universe of pure sets. I challenge this kind of reasoning by contrasting universism with a Zermelian form of multiversism. I argue that if extant justifications of reflection principles using notions of richness are acceptable for the universist, then the Zermelian can use similar justifications. However, I note that for some forms of richness argument, (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  • Conceptual Engineering for Mathematical Concepts.Fenner Stanley Tanswell - 2018 - Inquiry: An Interdisciplinary Journal of Philosophy 61 (8):881-913.
    ABSTRACTIn this paper I investigate how conceptual engineering applies to mathematical concepts in particular. I begin with a discussion of Waismann’s notion of open texture, and compare it to Shapiro’s modern usage of the term. Next I set out the position taken by Lakatos which sees mathematical concepts as dynamic and open to improvement and development, arguing that Waismann’s open texture applies to mathematical concepts too. With the perspective of mathematics as open-textured, I make the case that this allows us (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Might All Infinities Be the Same Size?Alexander R. Pruss - forthcoming - Australasian Journal of Philosophy:1-14.
    Cantor proved that no set has a bijection between itself and its power set. This is widely taken to have shown that there infinitely many sizes of infinite sets. The argument depends on the princip...
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • Multiverse Conceptions in Set Theory.Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo - 2015 - Synthese 192 (8):2463-2488.
    We review different conceptions of the set-theoretic multiverse and evaluate their features and strengths. In Sect. 1, we set the stage by briefly discussing the opposition between the ‘universe view’ and the ‘multiverse view’. Furthermore, we propose to classify multiverse conceptions in terms of their adherence to some form of mathematical realism. In Sect. 2, we use this classification to review four major conceptions. Finally, in Sect. 3, we focus on the distinction between actualism and potentialism with regard to the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.Vladimir Kanovei, Mikhail G. Katz & Thomas Mormann - 2013 - Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Modal Objectivity1.Justin Clarke‐Doane - 2019 - Noûs 53 (2):266-295.
    It is widely agreed that the intelligibility of modal metaphysics has been vindicated. Quine's arguments to the contrary supposedly confused analyticity with metaphysical necessity, and rigid with non-rigid designators.2 But even if modal metaphysics is intelligible, it could be misconceived. It could be that metaphysical necessity is not absolute necessity – the strictest real notion of necessity – and that no proposition of traditional metaphysical interest is necessary in every real sense. If there were nothing otherwise “uniquely metaphysically significant” about (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Axioms as Definitions: Revisiting Poincaré and Hilbert.Laura Fontanella - 2019 - Philosophia Scientae 23:167-183.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • WHAT CAN A CATEGORICITY THEOREM TELL US?Toby Meadows - 2013 - Review of Symbolic Logic (3):524-544.
    f The purpose of this paper is to investigate categoricity arguments conducted in second order logic and the philosophical conclusions that can be drawn from them. We provide a way of seeing this result, so to speak, through a first order lens divested of its second order garb. Our purpose is to draw into sharper relief exactly what is involved in this kind of categoricity proof and to highlight the fact that we should be reserved before drawing powerful philosophical conclusions (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Ontology and Realism in Mathematics.Haim Gaifman - 2012 - Review of Symbolic Logic 5 (3):480-512.
  • The Hyperuniverse Program.Tatiana Arrigoni & Sy-David Friedman - 2013 - Bulletin of Symbolic Logic 19 (1):77-96.
    The Hyperuniverse Program is a new approach to set-theoretic truth which is based on justifiable principles and leads to the resolution of many questions independent from ZFC. The purpose of this paper is to present this program, to illustrate its mathematical content and implications, and to discuss its philosophical assumptions.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Infinite Populations, Choice and Determinacy.Tadeusz Litak - 2018 - Studia Logica 106 (5):969-999.
    This paper criticizes non-constructive uses of set theory in formal economics. The main focus is on results on preference aggregation and Arrow’s theorem for infinite electorates, but the present analysis would apply as well, e.g., to analogous results in intergenerational social choice. To separate justified and unjustified uses of infinite populations in social choice, I suggest a principle which may be called the Hildenbrand criterion and argue that results based on unrestricted axiom of choice do not meet this criterion. The (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Isomorphism Invariance and Overgeneration.Owen Griffiths & A. C. Paseau - 2016 - Bulletin of Symbolic Logic 22 (4):482-503.
    The isomorphism invariance criterion of logical nature has much to commend it. It can be philosophically motivated by the thought that logic is distinctively general or topic neutral. It is capable of precise set-theoretic formulation. And it delivers an extension of ‘logical constant’ which respects the intuitively clear cases. Despite its attractions, the criterion has recently come under attack. Critics such as Feferman, MacFarlane and Bonnay argue that the criterion overgenerates by incorrectly judging mathematical notions as logical. We consider five (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Alternative Axiomatic Set Theories.M. Randall Holmes - 2008 - Stanford Encyclopedia of Philosophy.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation