Switch to: References

Add citations

You must login to add citations.
  1. What Paradoxes Depend On.Ming Hsiung - 2018 - Synthese:1-27.
    This paper gives a definition of self-reference on the basis of the dependence relation given by Leitgeb (2005), and the dependence digraph by Beringer & Schindler (2015). Unlike the usual discussion about self-reference of paradoxes centering around Yablo's paradox and its variants, I focus on the paradoxes of finitary characteristic, which are given again by use of Leitgeb's dependence relation. They are called 'locally finite paradoxes', satisfying that any sentence in these paradoxes can depend on finitely many sentences. I prove (...)
    Direct download (5 more)  
    Export citation  
    Bookmark   4 citations  
  • Some Open Questions About Degrees of Paradoxes.Ming Hsiung - manuscript
    We can classify the (truth-theoretic) paradoxes according to their degrees of paradoxicality. Roughly speaking, two paradoxes have the same degrees of paradoxicality, if they lead to a contradiction under the same conditions, and one paradox has a (non-strictly) lower degree of paradoxicality than another, if whenever the former leads to a contradiction under a condition, the latter does so under the very condition. This paper aims at setting forth the theoretical framework of the theory of paradoxicality degree, and putting forward (...)
    Direct download  
    Export citation  
  • Guest Editors’ Introduction.Riccardo Bruni & Shawn Standefer - 2019 - Journal of Philosophical Logic 48 (1):1-9.
  • Equiparadoxicality of Yablo’s Paradox and the Liar.Ming Hsiung - 2013 - Journal of Logic, Language and Information 22 (1):23-31.
    It is proved that Yablo’s paradox and the Liar paradox are equiparadoxical, in the sense that their paradoxicality is based upon exactly the same circularity condition—for any frame ${\mathcal{K}}$ , the following are equivalent: (1) Yablo’s sequence leads to a paradox in ${\mathcal{K}}$ ; (2) the Liar sentence leads to a paradox in ${\mathcal{K}}$ ; (3) ${\mathcal{K}}$ contains odd cycles. This result does not conflict with Yablo’s claim that his sequence is non-self-referential. Rather, it gives Yablo’s paradox a new significance: (...)
    Direct download (5 more)  
    Export citation  
    Bookmark   7 citations  
  • Tarski's Theorem and Liar-Like Paradoxes.Ming Hsiung - 2014 - Logic Journal of the IGPL 22 (1):24-38.
    Tarski's theorem essentially says that the Liar paradox is paradoxical in the minimal reflexive frame. We generalise this result to the Liar-like paradox $\lambda^\alpha$ for all ordinal $\alpha\geq 1$. The main result is that for any positive integer $n = 2^i(2j+1)$, the paradox $\lambda^n$ is paradoxical in a frame iff this frame contains at least a cycle the depth of which is not divisible by $2^{i+1}$; and for any ordinal $\alpha \geq \omega$, the paradox $\lambda^\alpha$ is paradoxical in a frame (...)
    Direct download (3 more)  
    Export citation  
    Bookmark   2 citations  
  • Boolean Paradoxes and Revision Periods.Ming Hsiung - 2017 - Studia Logica 105 (5):881-914.
    According to the revision theory of truth, the paradoxical sentences have certain revision periods in their valuations with respect to the stages of revision sequences. We find that the revision periods play a key role in characterizing the degrees of paradoxicality for Boolean paradoxes. We prove that a Boolean paradox is paradoxical in a digraph, iff this digraph contains a closed walk whose height is not any revision period of this paradox. And for any finitely many numbers greater than 1, (...)
    Direct download (2 more)  
    Export citation  
    Bookmark   6 citations