Citations of:
Jump Liars and Jourdain’s Card via the Relativized T-scheme
Studia Logica 91 (2):239-271 (2009)
Add citations
You must login to add citations.
|
|
We can classify the (truth-theoretic) paradoxes according to their degrees of paradoxicality. Roughly speaking, two paradoxes have the same degrees of paradoxicality, if they lead to a contradiction under the same conditions, and one paradox has a (non-strictly) lower degree of paradoxicality than another, if whenever the former leads to a contradiction under a condition, the latter does so under the very condition. This paper aims at setting forth the theoretical framework of the theory of paradoxicality degree, and putting forward (...) |
|
The liar paradox is a famous and ancient paradox related to logic and philosophy. It shows it is perfectly possible to construct sentences that are correct grammatically and semantically but that cannot be true or false in the traditional sense. In this paper the authors show four approaches to interpreting paradoxes that illustrate the influence of: the levels of language, their belonging to indeterminate compatible propositions or indeterminate propositions, being based on universal antinomy and the theory of dialetheism. |
|
|
|
This paper gives a definition of self-reference on the basis of the dependence relation given by Leitgeb (2005), and the dependence digraph by Beringer & Schindler (2015). Unlike the usual discussion about self-reference of paradoxes centering around Yablo's paradox and its variants, I focus on the paradoxes of finitary characteristic, which are given again by use of Leitgeb's dependence relation. They are called 'locally finite paradoxes', satisfying that any sentence in these paradoxes can depend on finitely many sentences. I prove (...) |
|
According to the revision theory of truth, the paradoxical sentences have certain revision periods in their valuations with respect to the stages of revision sequences. We find that the revision periods play a key role in characterizing the degrees of paradoxicality for Boolean paradoxes. We prove that a Boolean paradox is paradoxical in a digraph, iff this digraph contains a closed walk whose height is not any revision period of this paradox. And for any finitely many numbers greater than 1, (...) |
|
It is proved that Yablo’s paradox and the Liar paradox are equiparadoxical, in the sense that their paradoxicality is based upon exactly the same circularity condition—for any frame ${\mathcal{K}}$ , the following are equivalent: (1) Yablo’s sequence leads to a paradox in ${\mathcal{K}}$ ; (2) the Liar sentence leads to a paradox in ${\mathcal{K}}$ ; (3) ${\mathcal{K}}$ contains odd cycles. This result does not conflict with Yablo’s claim that his sequence is non-self-referential. Rather, it gives Yablo’s paradox a new significance: (...) |
|
Tarski's theorem essentially says that the Liar paradox is paradoxical in the minimal reflexive frame. We generalise this result to the Liar-like paradox $\lambda^\alpha$ for all ordinal $\alpha\geq 1$. The main result is that for any positive integer $n = 2^i(2j+1)$, the paradox $\lambda^n$ is paradoxical in a frame iff this frame contains at least a cycle the depth of which is not divisible by $2^{i+1}$; and for any ordinal $\alpha \geq \omega$, the paradox $\lambda^\alpha$ is paradoxical in a frame (...) |