Switch to: References

Add citations

You must login to add citations.
  1. Fragments of Martin's Axiom and Δ13 Sets of Reals.Joan Bagaria - 1994 - Annals of Pure and Applied Logic 69 (1):1-25.
    We strengthen a result of Harrington and Shelah by showing that, unless ω1 is an inaccessible cardinal in L, a relatively weak fragment of Martin's axiom implies that there exists a δ13 set of reals without the property of Baire.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Projective Forcing.Joan Bagaria & Roger Bosch - 1997 - Annals of Pure and Applied Logic 86 (3):237-266.
    We study the projective posets and their properties as forcing notions. We also define Martin's axiom restricted to projective sets, MA, and show that this axiom is weaker than full Martin's axiom by proving the consistency of ZFC + ¬lCH + MA with “there exists a Suslin tree”, “there exists a non-strong gap”, “there exists an entangled set of reals” and “there exists κ < 20 such that 20 < 2k”.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Summable Gaps.James Hirschorn - 2003 - Annals of Pure and Applied Logic 120 (1-3):1-63.
    It is proved, under Martin's Axiom, that all gaps in are indestructible in any forcing extension by a separable measure algebra. This naturally leads to a new type of gap, a summable gap. The results of these investigations have applications in Descriptive Set Theory. For example, it is shown that under Martin's Axiom the Baire categoricity of all Δ31 non-Δ31-complete sets of reals requires a weakly compact cardinal.
    Direct download (4 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Exact Equiconsistency Results for Δ 3 1 -Sets of Reals.Haim Judah - 1992 - Archive for Mathematical Logic 32 (2):101-112.
    We improve a theorem of Raisonnier by showing that Cons(ZFC+every Σ 2 1 -set of reals in Lebesgue measurable+every Π 2 1 -set of reals isK σ-regular) implies Cons(ZFC+there exists an inaccessible cardinal). We construct, fromL, a model where every Δ 3 1 -sets of reals is Lebesgue measurable, has the property of Baire, and every Σ 2 1 -set of reals isK σ-regular. We prove that if there exists a Σ n+1 1 unbounded filter on ω, then there exists (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Stationarity of the Collection of the Locally Regulars.Gunter Fuchs - 2015 - Archive for Mathematical Logic 54 (5-6):725-739.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark