Switch to: References

Add citations

You must login to add citations.
  1. The Cost of Prediction.Johannes Lenhard, Simon Stephan & Hans Hasse - manuscript
    This paper examines a looming reproducibility crisis in the core of the hard sciences. Namely, it concentrates on molecular modeling and simulation (MMS), a family of methods that predict properties of substances through computing interactions on a molecular level and that is widely popular in physics, chemistry, materials science, and engineering. The paper argues that in order to make quantitative predictions, sophisticated models are needed which have to be evaluated with complex simulation procedures that amalgamate theoretical, technological, and social factors (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  • The Value of Surprise in Science.Steven French & Alice Murphy - 2023 - Erkenntnis 88 (4):1447-1466.
    Scientific results are often presented as ‘surprising’ as if that is a good thing. Is it? And if so, why? What is the value of surprise in science? Discussions of surprise in science have been limited, but surprise has been used as a way of defending the epistemic privilege of experiments over simulations. The argument is that while experiments can ‘confound’, simulations can merely surprise (Morgan, 2005). Our aim in this paper is to show that the discussion of surprise can (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • What is a Simulation Model?Juan M. Durán - 2020 - Minds and Machines 30 (3):301-323.
    Many philosophical accounts of scientific models fail to distinguish between a simulation model and other forms of models. This failure is unfortunate because there are important differences pertaining to their methodology and epistemology that favor their philosophical understanding. The core claim presented here is that simulation models are rich and complex units of analysis in their own right, that they depart from known forms of scientific models in significant ways, and that a proper understanding of the type of model simulations (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Computer Simulations Then and Now: an Introduction and Historical Reassessment.Arianna Borrelli & Janina Wellmann - 2019 - NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin 27 (4):407-417.
  • Two Dimensions of Opacity and the Deep Learning Predicament.Florian J. Boge - 2021 - Minds and Machines 32 (1):43-75.
    Deep neural networks have become increasingly successful in applications from biology to cosmology to social science. Trained DNNs, moreover, correspond to models that ideally allow the prediction of new phenomena. Building in part on the literature on ‘eXplainable AI’, I here argue that these models are instrumental in a sense that makes them non-explanatory, and that their automated generation is opaque in a unique way. This combination implies the possibility of an unprecedented gap between discovery and explanation: When unsupervised models (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  • Opacity thought through: on the intransparency of computer simulations.Claus Beisbart - 2021 - Synthese 199 (3-4):11643-11666.
    Computer simulations are often claimed to be opaque and thus to lack transparency. But what exactly is the opacity of simulations? This paper aims to answer that question by proposing an explication of opacity. Such an explication is needed, I argue, because the pioneering definition of opacity by P. Humphreys and a recent elaboration by Durán and Formanek are too narrow. While it is true that simulations are opaque in that they include too many computations and thus cannot be checked (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Numerical instability and dynamical systems.Vincent Ardourel & Julie Jebeile - 2021 - European Journal for Philosophy of Science 11 (2):1-21.
    In philosophical studies regarding mathematical models of dynamical systems, instability due to sensitive dependence on initial conditions, on the one side, and instability due to sensitive dependence on model structure, on the other, have by now been extensively discussed. Yet there is a third kind of instability, which by contrast has thus far been rather overlooked, that is also a challenge for model predictions about dynamical systems. This is the numerical instability due to the employment of numerical methods involving a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Computer Simulations as Scientific Instruments.Ramón Alvarado - 2022 - Foundations of Science 27 (3):1183-1205.
    Computer simulations have conventionally been understood to be either extensions of formal methods such as mathematical models or as special cases of empirical practices such as experiments. Here, I argue that computer simulations are best understood as instruments. Understanding them as such can better elucidate their actual role as well as their potential epistemic standing in relation to science and other scientific methods, practices and devices.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Computer Simulations in Science.Eric Winsberg - forthcoming - Stanford Encyclopedia of Philosophy.
  • Framing the Epistemic Schism of Statistical Mechanics.Javier Anta - 2021 - Proceedings of the X Conference of the Spanish Society of Logic, Methodology and Philosophy of Science.
    In this talk I present the main results from Anta (2021), namely, that the theoretical division between Boltzmannian and Gibbsian statistical mechanics should be understood as a separation in the epistemic capabilities of this physical discipline. In particular, while from the Boltzmannian framework one can generate powerful explanations of thermal processes by appealing to their microdynamics, from the Gibbsian framework one can predict observable values in a computationally effective way. Finally, I argue that this statistical mechanical schism contradicts the Hempelian (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Degrees of Epistemic Opacity.Iñaki San Pedro - manuscript
    The paper analyses in some depth the distinction by Paul Humphreys between "epistemic opacity" —which I refer to as "weak epistemic opacity" here— and "essential epistemic opacity", and defends the idea that epistemic opacity in general can be made sense as coming in degrees. The idea of degrees of epistemic opacity is then exploited to show, in the context of computer simulations, the tight relation between the concept of epistemic opacity and actual scientific (modelling and simulation) practices. As a consequence, (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark