Citations of work:

Øystein Linnebo & Richard Pettigrew (2014). Two Types of Abstraction for Structuralism.

5 found
Are we missing citations?

PhilPapers citations & references are currently in beta testing. We expect to add many more in the future.

Meanwhile, you can use our bibliography tool to import references for this or another work.

Or you can directly add citations for the above work:

Search for work by author name and title
Add directly by record ID

  1.  12
    Generic Structures.Leon Horsten - forthcoming - Philosophia Mathematica:nky015.
    In this article ideas from Kit Fine’s theory of arbitrary objects are applied to questions regarding mathematical structuralism. I discuss how sui generis mathematical structures can be viewed as generic systems of mathematical objects, where mathematical objects are conceived of as arbitrary objects in Fine’s sense.
    Direct download (2 more)  
    Export citation  
  2.  47
    The Semantic Plights of the Ante-Rem Structuralist.Bahram Assadian - 2018 - Philosophical Studies 175 (12):1-20.
    A version of the permutation argument in the philosophy of mathematics leads to the thesis that mathematical terms, contrary to appearances, are not genuine singular terms referring to individual objects; they are purely schematic or variables. By postulating ‘ante-rem structures’, the ante-rem structuralist aims to defuse the permutation argument and retain the referentiality of mathematical terms. This paper presents two semantic problems for the ante- rem view: (1) ante-rem structures are themselves subject to the permutation argument; (2) the ante-rem structuralist (...)
    Direct download (2 more)  
    Export citation  
    Bookmark   1 citation  
  3.  44
    What Are Structural Properties?†.Johannes Korbmacher & Georg Schiemer - 2018 - Philosophia Mathematica 26 (3):295-323.
    Informally, structural properties of mathematical objects are usually characterized in one of two ways: either as properties expressible purely in terms of the primitive relations of mathematical theories, or as the properties that hold of all structurally similar mathematical objects. We present two formal explications corresponding to these two informal characterizations of structural properties. Based on this, we discuss the relation between the two explications. As will be shown, the two characterizations do not determine the same class of mathematical properties. (...)
    Direct download (5 more)  
    Export citation  
    Bookmark   2 citations  
  4.  11
    Introduction to Special Issue: Dedekind and the Philosophy of Mathematics.Erich Reck - 2017 - Philosophia Mathematica 25 (3):287-291.
    © The Author [2017]. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.comRichard Dedekind was a contemporary of Bernhard Riemann, Georg Cantor, and Gottlob Frege, among others. Together, they revolutionized mathematics and logic in the second half of the nineteenth century. Dedekind had an especially strong influence on David Hilbert, Ernst Zermelo, Emmy Noether, and Nicolas Bourbaki, who completed that revolution in the twentieth century. With respect to mainstream mathematics, he is best known for his contributions (...)
    Direct download (3 more)  
    Export citation  
  5.  11
    The Structuralist Thesis Reconsidered.Georg Schiemer & John Wigglesworth - 2017 - British Journal for the Philosophy of Science:axy004.
    Øystein Linnebo and Richard Pettigrew have recently developed a version of non-eliminative mathematical structuralism based on Fregean abstraction principles. They argue that their theory of abstract structures proves a consistent version of the structuralist thesis that positions in abstract structures only have structural properties. They do this by defining a subset of the properties of positions in structures, so-called fundamental properties, and argue that all fundamental properties of positions are structural. In this paper, we argue that the structuralist thesis, even (...)
    Direct download (4 more)  
    Export citation