Switch to: References

Add citations

You must login to add citations.
  1. Aplicaciones intencionales de la mecánica cuántica.Mariano Lastiri - 2012 - Agora 31 (2):271-285.
    Este trabajo presenta algunas discusiones preliminares a una reconstrucción de la mecánicacuántica desde una perspectiva estructuralista. Intento responder a la pregunta por lostérminos MQ- no teóricos, es decir, qué magnitudes pueden ser medidas con independenciade la ecuación de Schrödinger y de la regla de Born. Uno de los aspectos relevantes que puedeser analizado una vez que se ha respondido a esta pregunta es el problema de la medición.Dado que el problema de la medición está directamente relacionado con el carácter linealde (...)
    No categories
    Direct download (3 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Interpretations of Quantum Theory in the Light of Modern Cosmology.Mario Castagnino, Sebastian Fortin, Roberto Laura & Daniel Sudarsky - 2017 - Foundations of Physics 47 (11):1387-1422.
    The difficult issues related to the interpretation of quantum mechanics and, in particular, the “measurement problem” are revisited using as motivation the process of generation of structure from quantum fluctuations in inflationary cosmology. The unessential mathematical complexity of the particular problem is bypassed, facilitating the discussion of the conceptual issues, by considering, within the paradigm set up by the cosmological problem, another problem where symmetry serves as a focal point: a simplified version of Mott’s problem.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Isomerism and Decoherence.Sebastian Fortin, Olimpia Lombardi & Juan Camilo Martínez González - 2016 - Foundations of Chemistry 18 (3):225-240.
    In the present paper we address the problem of optical isomerism embodied in the socalled “Hund’s paradox”, which points to the difficulty to account for chirality by means of quantum mechanics. In particular, we explain the answer to the problem proposed by the theory of decoherence. The purpose of this article is to challenge this answer on the basis of a conceptual analysis of the phenomenon of decoherence, that reveals the limitations of the theory of decoherence to solve the difficulties (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Partial Traces in Decoherence and in Interpretation: What Do Reduced States Refer To?Sebastian Fortin & Olimpia Lombardi - 2014 - Foundations of Physics 44 (4):426-446.
    The interpretation of the concept of reduced state is a subtle issue that has relevant consequences when the task is the interpretation of quantum mechanics itself. The aim of this paper is to argue that reduced states are not the quantum states of subsystems in the same sense as quantum states are states of the whole composite system. After clearly stating the problem, our argument is developed in three stages. First, we consider the phenomenon of environment-induced decoherence as an example (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Quantum Mechanics and Perspectivalism.Dennis Dieks - unknown
    Experimental evidence of the last decades has made the status of ``collapses of the wave function'' even more shaky than it already was on conceptual grounds: interference effects turn out to be detectable even when collapses are typically expected to occur. Non-collapse interpretations should consequently be taken seriously. In this paper we argue that such interpretations suggest a perspectivalism according to which quantum objects are not characterized by monadic properties, but by relations to other systems. Accordingly, physical systems may possess (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Undecidability and the Problem of Outcomes in Quantum Measurements.Rodolfo Gambini, Luis Pedro García Pintos & Jorge Pullin - 2010 - Foundations of Physics 40 (1):93-115.
    We argue that it is fundamentally impossible to recover information about quantum superpositions when a quantum system has interacted with a sufficiently large number of degrees of freedom of the environment. This is due to the fact that gravity imposes fundamental limitations on how accurate measurements can be. This leads to the notion of undecidability: there is no way to tell, due to fundamental limitations, if a quantum system evolved unitarily or suffered wavefunction collapse. This in turn provides a solution (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • A New Application of the Modal-Hamiltonian Interpretation of Quantum Mechanics: The Problem of Optical Isomerism.Sebastian Fortin, Olimpia Lombardi & Juan Camilo Martínez González - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 62:123-135.
    The modal-Hamiltonian interpretation belongs to the modal family of interpretations of quantum mechanics. By endowing the Hamiltonian with the role of selecting the subset of the definite-valued observables of the system, it accounts for ideal and non-ideal measurements, and also supplies a criterion to distinguish between reliable and non-reliable measurements in the non-ideal case. It can be reformulated in an explicitly invariant form, in terms of the Casimir operators of the Galilean group, and the compatibility of the MHI with the (...)
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Compatibility Between Environment-Induced Decoherence and the Modal-Hamiltonian Interpretation of Quantum Mechanics.Olimpia Lombardi, Juan Sebastián Ardenghi, Sebastian Fortin & Mario Castagnino - unknown
    Given the impressive success of environment-induced decoherence, nowadays no interpretation of quantum mechanics can ignore its results. The modal-Hamiltonian interpretation has proved to be effective for solving several interpretative problems but, since its actualization rule applies to closed systems, it seems to stand at odds of EID. The purpose of this paper is to show that this is not the case: the states einselected by the interaction with the environment according to EID are the eigenvectors of an actual-valued observable belonging (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Quantum Mechanics: Symmetry and Interpretation.Sebastian Fortin & Olimpia Lombardi - unknown
    In this paper it will be argued that any realist interpretation of quantum mechanics intending to preserve the objectivity of the set of the definite-valued observables should require such a set to be invariant under the symmetry group of the theory. In particular, it will be shown that the natural way to reach this goal is to appeal to the Casimir operators of the Galilean group. Additionally, this idea will be generalized in two ways: by selecting the definite-valued observables of (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Entre mecánica cuántica y estructuras químicas: ¿a qué refiere la química cuántica?Olimpia Lombardi & Juan Camilo Martínez González - 2012 - Scientiae Studia 10 (4):649-670.
    El propósito del presente trabajo consiste en abordar la pregunta por la ontología de la química cuántica. Para ello nos concentraremos en el concepto de enlace químico desde la perspectiva de los dos enfoques a través de los cuales la ecuación de Schrödinger se aplica a los sistemas químicos moleculares: la teoría del enlace de valencia (EV) y la teoría del orbital molecular (OM). Sobre la base de la presentación de ambos enfoques y su comparación, señalaremos que, a pesar de (...)
    Direct download (7 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Quantum Mechanics: Ontology Without Individuals.Newton da Costa & Olimpia Lombardi - 2014 - Foundations of Physics 44 (12):1246-1257.
    The purpose of the present paper is to consider the traditional interpretive problems of quantum mechanics from the viewpoint of a modal ontology of properties. In particular, we will try to delineate a quantum ontology that (i) is modal, because describes the structure of the realm of possibility, and (ii) lacks the ontological category of individual. The final goal is to supply an adequate account of quantum non-individuality on the basis of this ontology.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Modal Ontology of Properties for Quantum Mechanics.Newton Costa, Olimpia Lombardi & Mariano Lastiri - 2013 - Synthese 190 (17):3671-3693.
    Our purpose in this paper is to delineate an ontology for quantum mechanics that results adequate to the formalism of the theory. We will restrict our aim to the search of an ontology that expresses the conceptual content of the recently proposed modal-Hamiltonian interpretation, according to which the domain referred to by non-relativistic quantum mechanics is an ontology of properties. The usual strategy in the literature has been to focus on only one of the interpretive problems of the theory and (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Linking Chemistry with Physics: Arguments and Counterarguments. [REVIEW]Olimpia Lombardi - 2014 - Foundations of Chemistry 16 (3):181-192.
    The many-faced relationship between chemistry and physics is one of the most discussed topics in the philosophy of chemistry. In his recent book Reducing Chemistry to Physics. Limits, Models, Consequences, Hinne Hettema conceives this relationship as a reduction link, and devotes his work to defend this position on the basis of a “naturalized” concept of reduction. In the present paper I critically review three kinds of issues stemming from Hettema’s argumentation: philosophical, scientific and methodological.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Modal-Hamiltonian Interpretation and the Galilean Covariance of Quantum Mechanics.Olimpia Lombardi, Mario Castagnino & Juan Sebastián Ardenghi - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41 (2):93-103.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Matters Are Not so Clear on the Physical Side.Mario Castagnino - 2010 - Foundations of Chemistry 12 (2):159-166.
    According to ontological reductionism, molecular chemistry refers, at last, to the quantum ontology; therefore, the ontological commitments of chemistry turn out to be finally grounded on quantum mechanics. The main problem of this position is that nobody really knows what quantum ontology is. The purpose of this work is to argue that the confidence in the existence of the physical entities described by quantum mechanics does not take into account the interpretative problems of the theory: in the discussions about the (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • The Modal-Hamiltonian Interpretation and the Galilean Covariance of Quantum Mechanics.Olimpia Lombardi, Mario Castagnino & Juan Sebastián Ardenghi - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41 (2):93-103.
  • A Modal Ontology of Properties for Quantum Mechanics.Newton da Costa, Olimpia Lombardi & Mariano Lastiri - 2013 - Synthese 190 (17):3671-3693.
    Our purpose in this paper is to delineate an ontology for quantum mechanics that results adequate to the formalism of the theory. We will restrict our aim to the search of an ontology that expresses the conceptual content of the recently proposed modal-Hamiltonian interpretation, according to which the domain referred to by non-relativistic quantum mechanics is an ontology of properties. The usual strategy in the literature has been to focus on only one of the interpretive problems of the theory and (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Is Quantum Indeterminism Real? Theological Implications.Claudia E. Vanney - 2015 - Zygon 50 (3):736-756.
    Quantum mechanics studies physical phenomena on a microscopic scale. These phenomena are far beyond the reach of our observation, and the connection between QM's mathematical formalism and the experimental results is very indirect. Furthermore, quantum indeterminism defies common sense. Microphysical experiments have shown that, according to the empirical context, electrons and quanta of light behave as waves and other times as particles, even though it is impossible to design an experiment that manifests both behaviors at the same time. Unlike Newtonian (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Quantum Mechanics: Modal Interpretation and Galilean Transformations. [REVIEW]Juan Sebastian Ardenghi, Mario Castagnino & Olimpia Lombardi - 2009 - Foundations of Physics 39 (9):1023-1045.
    The aim of this paper is to consider in what sense the modal-Hamiltonian interpretation of quantum mechanics satisfies the physical constraints imposed by the Galilean group. In particular, we show that the only apparent conflict, which follows from boost-transformations, can be overcome when the definition of quantum systems and subsystems is taken into account. On this basis, we apply the interpretation to different well-known models, in order to obtain concrete examples of the previous conceptual conclusions. Finally, we consider the role (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   13 citations