Citations of:
Set-theoretic absoluteness and the revision theory of truth
Studia Logica 68 (1):21-41 (2001)
Add citations
You must login to add citations.
|
|
Revision sequences were introduced in 1982 by Herzberger and Gupta as a mathematical tool in formalising their respective theories of truth. Since then, revision has developed in a method of analysis of theoretical concepts with several applications in other areas of logic and philosophy. Revision sequences are usually formalised as ordinal-length sequences of objects of some sort. A common idea of revision process is shared by all revision theories but specific proposals can differ in the so-called limit rule, namely the (...) |
|
We present an extension of the basic revision theory of circular definitions with a unary operator, □. We present a Fitch-style proof system that is sound and complete with respect to the extended semantics. The logic of the box gives rise to a simple modal logic, and we relate provability in the extended proof system to this modal logic via a completeness theorem, using interpretations over circular definitions, analogous to Solovay’s completeness theorem forGLusing arithmetical interpretations. We adapt our proof to (...) |
|
Revision sequences are a kind of transfinite sequences which were introduced by Herzberger and Gupta in 1982 as the main mathematical tool for developing their respective revision theories of truth. We generalise revision sequences to the notion of cofinally invariant sequences, showing that several known facts about Herzberger’s and Gupta’s theories also hold for this more abstract kind of sequences and providing new and more informative proofs of the old results. |
|
The model of self-referential truth presented in this paper, named Revision-theoretic supervaluation, aims to incorporate the philosophical insights of Gupta and Belnap’s Revision Theory of Truth into the formal framework of Kripkean fixed-point semantics. In Kripke-style theories the final set of grounded true sentences can be reached from below along a strictly increasing sequence of sets of grounded true sentences: in this sense, each stage of the construction can be viewed as an improvement on the previous ones. I want to (...) |
|
We argue that distinct conditionals—conditionals that are governed by different logics—are needed to formalize the rules of Truth Introduction and Truth Elimination. We show that revision theory, when enriched with the new conditionals, yields an attractive theory of truth. We go on to compare this theory with one recently proposed by Hartry Field. |
|
|
|
|
|
|
|
|