Switch to: References

Add citations

You must login to add citations.
  1. Philosophy of Mathematical Practice: A Primer for Mathematics Educators.Yacin Hamami & Rebecca Morris - forthcoming - ZDM Mathematics Education.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the (...)
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • The Twofold Role of Diagrams in Euclid’s Plane Geometry.Marco Panza - 2012 - Synthese 186 (1):55-102.
    Proposition I.1 is, by far, the most popular example used to justify the thesis that many of Euclid’s geometric arguments are diagram-based. Many scholars have recently articulated this thesis in different ways and argued for it. My purpose is to reformulate it in a quite general way, by describing what I take to be the twofold role that diagrams play in Euclid’s plane geometry (EPG). Euclid’s arguments are object-dependent. They are about geometric objects. Hence, they cannot be diagram-based unless diagrams (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • On Euclidean Diagrams and Geometrical Knowledge.Tamires Dal Magro & Manuel J. García-Pérez - 2019 - Theoria. An International Journal for Theory, History and Foundations of Science 34 (2):255.
    We argue against the claim that the employment of diagrams in Euclidean geometry gives rise to gaps in the proofs. First, we argue that it is a mistake to evaluate its merits through the lenses of Hilbert’s formal reconstruction. Second, we elucidate the abilities employed in diagram-based inferences in the Elements and show that diagrams are mathematically reputable tools. Finally, we complement our analysis with a review of recent experimental results purporting to show that, not only is the Euclidean diagram-based (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Marcus Giaquinto. Visual Thinking in Mathematics: An Epistemological Study. [REVIEW]Jeremy Avigad - 2009 - Philosophia Mathematica 17 (1):95-108.
    Published in 1891, Edmund Husserl's first book, Philosophie der Arithmetik, aimed to ‘prepare the scientific foundations for a future construction of that discipline’. His goals should seem reasonable to contemporary philosophers of mathematics: "…through patient investigation of details, to seek foundations, and to test noteworthy theories through painstaking criticism, separating the correct from the erroneous, in order, thus informed, to set in their place new ones which are, if possible, more adequately secured. 1"But the ensuing strategy for grounding mathematical knowledge (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Philosophy of Mathematics: Making a Fresh Start.Carlo Cellucci - 2013 - Studies in History and Philosophy of Science Part A 44 (1):32-42.
    The paper distinguishes between two kinds of mathematics, natural mathematics which is a result of biological evolution and artificial mathematics which is a result of cultural evolution. On this basis, it outlines an approach to the philosophy of mathematics which involves a new treatment of the method of mathematics, the notion of demonstration, the questions of discovery and justification, the nature of mathematical objects, the character of mathematical definition, the role of intuition, the role of diagrams in mathematics, and the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Axiomatizing Changing Conceptions of the Geometric Continuum I: Euclid-Hilbert†.John T. Baldwin - 2018 - Philosophia Mathematica 26 (3):346-374.
    We give a general account of the goals of axiomatization, introducing a variant on Detlefsen’s notion of ‘complete descriptive axiomatization’. We describe how distinctions between the Greek and modern view of number, magnitude, and proportion impact the interpretation of Hilbert’s axiomatization of geometry. We argue, as did Hilbert, that Euclid’s propositions concerning polygons, area, and similar triangles are derivable from Hilbert’s first-order axioms. We argue that Hilbert’s axioms including continuity show much more than the geometrical propositions of Euclid’s theorems and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Proofs, Pictures, and Euclid.John Mumma - 2010 - Synthese 175 (2):255 - 287.
    Though pictures are often used to present mathematical arguments, they are not typically thought to be an acceptable means for presenting mathematical arguments rigorously. With respect to the proofs in the Elements in particular, the received view is that Euclid's reliance on geometric diagrams undermines his efforts to develop a gap-free deductive theory. The central difficulty concerns the generality of the theory. How can inferences made from a particular diagrams license general mathematical results? After surveying the history behind the received (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   39 citations  
  • By Marcus Giaquinto.Marcus Giaquinto & Jeremy Avigad - unknown
    Published in 1891, Edmund Husserl’s first book, Philosophie der Arithmetik, aimed to “prepare the scientific foundations for a future construction of that discipline.” His goals should seem reasonable to contemporary philosophers of mathematics: . . . through patient investigation of details, to seek foundations, and to test noteworthy theories through painstaking criticism, separating the correct from the erroneous, in order, thus informed, to set in their place new ones which are, if possible, more adequately secured. [7, p. 5]2 But the (...)
    Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • The Epistemological Import of Euclidean Diagrams.Daniele Molinini - 2016 - Kairos 16 (1):124-141.
    In this paper I concentrate on Euclidean diagrams, namely on those diagrams that are licensed by the rules of Euclid’s plane geometry. I shall overview some philosophical stances that have recently been proposed in philosophy of mathematics to account for the role of such diagrams in mathematics, and more particularly in Euclid’s Elements. Furthermore, I shall provide an original analysis of the epistemic role that Euclidean diagrams may have in empirical sciences, more specifically in physics. I shall claim that, although (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Prolegomena to a Cognitive Investigation of Euclidean Diagrammatic Reasoning.Yacin Hamami & John Mumma - 2013 - Journal of Logic, Language and Information 22 (4):421-448.
    Euclidean diagrammatic reasoning refers to the diagrammatic inferential practice that originated in the geometrical proofs of Euclid’s Elements. A seminal philosophical analysis of this practice by Manders (‘The Euclidean diagram’, 2008) has revealed that a systematic method of reasoning underlies the use of diagrams in Euclid’s proofs, leading in turn to a logical analysis aiming to capture this method formally via proof systems. The central premise of this paper is that our understanding of Euclidean diagrammatic reasoning can be fruitfully advanced (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Formal System for Euclid’s Elements.Jeremy Avigad, Edward Dean & John Mumma - 2009 - Review of Symbolic Logic 2 (4):700--768.
    We present a formal system, E, which provides a faithful model of the proofs in Euclid's Elements, including the use of diagrammatic reasoning.
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   29 citations  
  • The Mystery of Deduction and Diagrammatic Aspects of Representation.Sun-Joo Shin - 2015 - Review of Philosophy and Psychology 6 (1):49-67.
    Deduction is decisive but nonetheless mysterious, as I argue in the introduction. I identify the mystery of deduction as surprise-effect and demonstration-difficulty. The first section delves into how the mystery of deduction is connected with the representation of information and lays the groundwork for our further discussions of various kinds of representation. The second and third sections, respectively, present a case study for the comparison between symbolic and diagrammatic representation systems in terms of how two aspects of the mystery of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation