Switch to: References

Citations of:

The Theory of Relativity

Oxford, Clarendon Press (1972)

Add citations

You must login to add citations.
  1. Selection and Explanation.Alexander Bird - 2006 - In Rethinking Explanation. Springer. pp. 131--136.
    Selection explanations explain some non-accidental generalizations in virtue of a selection process. Such explanations are not particulaizable - they do not transfer as explanations of the instances of such generalizations. This is unlike many explanations in the physical sciences, where the explanation of the general fact also provides an explanation of its instances (i.e. standard D-N explanations). Are selection explanations (e.g. in biology) therefore a different kind of explanation? I argue that to understand this issue, we need to see that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • A new paradox and the reconciliation of Lorentz and Galilean transformations.Hongyu Guo - forthcoming - Synthese:1-30.
    One of the most debated problems in the foundations of the special relativity theory is the role of conventionality. A common belief is that the Lorentz transformation is correct but the Galilean transformation is wrong. It is another common belief that the Galilean transformation is incompatible with Maxwell equations. However, the “principle of general covariance” in general relativity makes any spacetime coordinate transformation equally valid. This includes the Galilean transformation as well. This renders a new paradox. This new paradox is (...)
    No categories
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • An Extension of Special Relativity to Accelerating Frames and Some of its Philosophical Implications.John Urani & George Gale - 1982 - Synthese 50 (3):301 - 323.
    A rigorous extension of the full Lorentz group is found which is parameterized by interframe velocities v(t) and which reduces to Special Relativity for acceleration-free cases and to Galilean relativity for low velocity cases. Full group properties are exhibited. Four-momentum is defined and particle masses are shown to be invariants. Four-force is introduced and pseudoforces are shown to enter the equations of particle dynamics. Maxwell's equations are shown to take on pseudocurrent terms in accelerating frames. A four-vector Green function solution (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Incisive Approach to Fermi-Walker Transport.Justo Pastor Lambare - 2020 - Foundations of Science 25 (4):987-1001.
    A rational approach to the Fermi-Walker transport equation is proposed by deriving it from a condition of “non-rotation”. First, the condition is applied to a tetrad basis and then generalized to an arbitrary space-time four-vector. The method is conceptually simple and apart from the use of tetrad bases in four-dimensional space-time, does not require the effort of visualizing abstract geometrical constructs in spaces of more than three dimensions. The argument develops in the context of the flat space-time of special relativity (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • What Do Light Clocks Say to Us Regarding the so-Called Clock Hypothesis?Mario Bacelar Valente - 2018 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 33 (3):435-446.
    The clock hypothesis is taken to be an assumption independent of special relativity necessary to describe accelerated clocks. This enables to equate the time read off by a clock to the proper time. Here, it is considered a physical system–the light clock–proposed by Marzke and Wheeler. Recently, Fletcher proved a theorem that shows that a sufficiently small light clock has a time reading that approximates to an arbitrary degree the proper time. The clock hypothesis is not necessary to arrive at (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • Propagation Properties of Bound Electromagnetic Field: Classical and Quantum Viewpoints.A. L. Kholmetskii, O. V. Missevitch, T. Yarman & R. Smirnov-Rueda - 2020 - Foundations of Physics 50 (11):1686-1722.
    The present work is motivated by recent experiments aimed to measure the propagation velocity of bound electromagnetic field that reveal no retardation in the absence of EM radiation. We show how these findings can be incorporated into the mathematical structure of special relativity theory that allows us to reconsider some selected problems of classical and quantum electrodynamics. In particular, we come to the conclusion that the total four-momentum for a classical system “particles plus fields” ought to be a present state (...)
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Relativistic Thermodynamics and the Passage of Time.Friedel Weinert - 2010 - Humana Mente 4 (13):175-191.
    The debate about the passage of time is usually confined to Minkowski‟s geometric interpretation of space-time. It infers the block universe from the notion of relative simultaneity. But there are alternative interpretations of space-time – so-called axiomatic approaches –, based on the existence of „optical facts‟, which have thermodynamic properties. It may therefore be interesting to approach the afore-mentioned debate from the point of view of relativistic thermodynamics, in which invariant parameters exist, which may serve to indicate the passage of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Progress and Gravity: Overcoming Divisions Between General Relativity and Particle Physics and Between Physics and HPS.J. Brian Pitts - 2017 - In Khalil Chamcham, Joseph Silk, John D. Barrow & Simon Saunders (eds.), The Philosophy of Cosmology. Cambridge University Press. pp. 263-282.
    Reflective equilibrium between physics and philosophy, and between GR and particle physics, is fruitful and rational. I consider the virtues of simplicity, conservatism, and conceptual coherence, along with perturbative expansions. There are too many theories to consider. Simplicity supplies initial guidance, after which evidence increasingly dominates. One should start with scalar gravity; evidence required spin 2. Good beliefs are scarce, so don't change without reason. But does conservatism prevent conceptual innovation? No: considering all serious possibilities could lead to Einstein's equations. (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • A Weyl-Type Theorem for Geometrized Newtonian Gravity.Erik Curiel - unknown
    I state and prove, in the context of a space having only the metrical structure imposed by the geometrized version of Newtonian gravitational theory, a theorem analagous to that of Weyl's in a Lorentzian space. The theorem, loosely speaking, says that a projective structure and a suitably defined compatible conformal structure on such a space jointly suffice for fixing the metrical structure of a Newtonian spacetime model up to constant factors. It allows one to give a natural, physically compelling interpretation (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • On the Equivalence of Fields of Acceleration and Gravity.Bernard Lavenda - unknown
    The question of whether the same acceleration eld that is found in a rigid uniformly rotating disc can annul a gravitational eld is answered in the negative because their curvatures are dierent. There is an exact correspondence between a uniformly rotating disc and hyperbolic geometry of constant curvature, while, gravitational elds require non-constant, negative curvature. The connection between the two is the free-fall time; the former has constant density while the latter, constant mass. The distortion caused by motion is experienced (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • The Radical Reinterpretation of Michelson-Morley’s Experiment by Special Relativity.Alejandro Cassini & Leonardo Levinas - 2005 - Scientiae Studia 3 (4):583-596.
  • ‘But One Must Not Legalize the Mentioned Sin’: Phenomenological Vs. Dynamical Treatments of Rods and Clocks in Einstein׳s Thought.Marco Giovanelli - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 48 (1):20-44.
    The paper offers a historical overview of Einstein's oscillating attitude towards a "phenomenological" and "dynamical" treatment of rods and clocks in relativity theory. Contrary to what it has been usually claimed in recent literature, it is argued that this distinction should not be understood in the framework of opposition between principle and constructive theories. In particular Einstein does not seem to have plead for a "dynamical" explanation for the phenomenon rods contraction and clock dilation which was initially described only "kinematically". (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • Operational Understanding of the Covariance of Classical Electrodynamics.Marton Gomori & Laszlo E. Szabo - unknown
    It is common in the literature on classical electrodynamics and relativity theory that the transformation rules for the basic electrodynamical quantities are derived from the pre-assumption that the equations of electrodynamics are covariant against these---unknown---transformation rules. There are several problems to be raised concerning these derivations. This is, however, not our main concern in this paper. Even if these derivations were completely correct, they leave open the following fundamental question: Are the so-obtained transformation rules indeed identical with the true transformation (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Is the Relativity Principle Consistent with Classical Electrodynamics?John Wiley - unknown
    It is common in the literature on classical electrodynamics (ED) and relativity theory that the transformation rules for the basic electrodynamical quantities are derived from the hypothesis that the relativity principle (RP) applies to Maxwell’s electrodynamics. As it will turn out from our analysis, these derivations raise several problems, and certain steps are logically questionable. This is, however, not our main concern in this paper. Even if these derivations were completely correct, they leave open the following questions: (1) Is the (...)
    Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Is the Relativity Principle Consistent with Electrodynamics?John Wiley - unknown
    It is common in the literature on electrodynamics and relativity theory that the transformation rules for the basic electrodynamical quantities are derived from the hypothesis that the relativity principle (RP) applies for Maxwell’s electrodynamics. As it will turn out from our analysis, these derivations raise several problems, and certain steps are logically questionable. This is, however, not our main concern in this paper. Even if these derivations were completely correct, they leave open the following questions: (1) Is (RP) a true (...)
    Direct download (4 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Is the Relativity Principle Consistent with Classical Electrodynamics? Towards a Logico-Empiricist Reconstruction of a Physical Theory.Marton Gomori & Laszlo E. Szabo - unknown
    It is common in the literature on classical electrodynamics and relativity theory that the transformation rules for the basic electrodynamical quantities are derived from the hypothesis that the relativity principle applies to Maxwell's electrodynamics. As it will turn out from our analysis, these derivations raise several problems, and certain steps are logically questionable. This is, however, not our main concern in this paper. Even if these derivations were completely correct, they leave open the following questions: Is the RP a true (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • Bell's Spaceships Problem and the Foundations of Special Relativity.Francisco Fernflores - 2011 - International Studies in the Philosophy of Science 25 (4):351-370.
    Recent ?dynamical? approaches to relativity by Harvey Brown and his colleagues have used John Bell's own solution to a problem in relativity which has in the past sometimes been called ?Bell's spaceships paradox?, in a central way. This paper examines solutions to this problem in greater detail and from a broader philosophical perspective than Brown et al. offer. It also analyses the well-known analogy between special relativity and classical thermodynamics. This analysis leads to the sceptical conclusion that Bell's solution yields (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  • Stellar and Planetary Aberration.Thomas E. Phipps Jr - 1994 - Apeiron (Misc) 19:13.
    Direct download  
     
    Export citation  
     
    Bookmark  
  • On Gravitational Effects in the Schrödinger Equation.M. D. Pollock - 2014 - Foundations of Physics 44 (4):368-388.
    The Schrödinger equation for a particle of rest mass $m$ and electrical charge $ne$ interacting with a four-vector potential $A_i$ can be derived as the non-relativistic limit of the Klein–Gordon equation $\left( \Box '+m^2\right) \varPsi =0$ for the wave function $\varPsi $ , where $\Box '=\eta ^{jk}\partial '_j\partial '_k$ and $\partial '_j=\partial _j -\mathrm {i}n e A_j$ , or equivalently from the one-dimensional action $S_1=-\int m ds +\int neA_i dx^i$ for the corresponding point particle in the semi-classical approximation $\varPsi \sim (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Gyromagnetic and Gyrogravito-Magnetic Ratios of the Electron.M. D. Pollock - 2015 - Foundations of Physics 45 (6):611-643.
    The magnetic dipole moment of the Kerr–Newman metric, defined by mass \, electrical charge \ and angular momentum \, is \, corresponding, for all values of \, to a gyromagnetic ratio \, which is also the value of the intrinsic gyromagnetic ratio of the electron, as first noted by Carter. Here, we argue that this result can be understood in terms of the particle-wave complementarity principle. For \ can only be defined at asymptotic spatial infinity, where the metric appears to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Poynting Theorem, Relativistic Transformation of Total Energy–Momentum and Electromagnetic Energy–Momentum Tensor.Alexander Kholmetskii, Oleg Missevitch & Tolga Yarman - 2016 - Foundations of Physics 46 (2):236-261.
    We address to the Poynting theorem for the bound electromagnetic field, and demonstrate that the standard expressions for the electromagnetic energy flux and related field momentum, in general, come into the contradiction with the relativistic transformation of four-vector of total energy–momentum. We show that this inconsistency stems from the incorrect application of Poynting theorem to a system of discrete point-like charges, when the terms of self-interaction in the product \ and bound electric field \ are generated by the same source (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Some Characteristics of Marcus’ Work in the Light of the History of Science.Francesco Di Giacomo - 2015 - Foundations of Chemistry 17 (1):67-78.
    Professor Rudolph A. Marcus, recipient of the 1992 Nobel Prize in Chemistry, is a distinguished theoretical chemist. Two important theories happen to bear his name: the Rice Ramsperger Kassel Marcus theory of unimolecular reactions and the Marcus theory of electron transfer reactions. When considering Marcus’ work, one finds characteristics of it that bear striking similarity to those that can be found in the work of some famous scientists. Such characteristics appear then as common recurring patterns in the work of theoreticians. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Speed of Light on Rotating Platforms.G. Rizzi & A. Tartaglia - 1998 - Foundations of Physics 28 (11):1663-1683.
    If is often taken for granted that on a rotating disk it is possible to operate a global 3+1 splitting of spacetime such that both lengths and time intervals are uniquely defined in terms of measurements performed by real rods and real clocks at rest on the platform. This paper shows that this assumption, although widespread and apparently trivial, leads to an anisotropy of the velocity of two light beams traveling in opposite directions along the rim of the disk, which (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Synchronization Gauges and the Principles of Special Relativity.Guido Rizzi, Matteo Luca Ruggiero & Alessio Serafini - 2004 - Foundations of Physics 34 (12):1835-1887.
    The axiomatic bases of Special Relativity Theory (SRT) are thoroughly re-examined from an operational point of view, with particular emphasis on the status of Einstein synchronization in the light of the possibility of arbitrary synchronization procedures in inertial reference frames. Once correctly and explicitly phrased, the principles of SRT allow for a wide range of “theories” that differ from the standard SRT only for the difference in the chosen synchronization procedures, but are wholly equivalent to SRT in predicting empirical facts. (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Superluminal Signals and the Resolution of the Causal Paradox.F. Selleri - 2006 - Foundations of Physics 36 (3):443-463.
    The experimental evidence for electromagnetic signals propagating with superluminal group velocity is recalled. Transformations of space and time depending on a synchronization parameter, e1, indicate the existence of a privileged inertial system. The Lorentz transformations are obtained for a particular e1≠0. No standard experiment on relativity depends on e1, but if accelerations are considered only e1=0 remains possible. The causal paradox generated by superluminal signals (SLS) in the theory of relativity does not exist in the theory with e1=0. The irrelevance (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • On “Gauge Renormalization” in Classical Electrodynamics.Alexander L. Kholmetskii - 2006 - Foundations of Physics 36 (5):715-744.
    In this paper we pay attention to the inconsistency in the derivation of the symmetric electromagnetic energy–momentum tensor for a system of charged particles from its canonical form, when the homogeneous Maxwell’s equations are applied to the symmetrizing gauge transformation, while the non-homogeneous Maxwell’s equations are used to obtain the motional equation. Applying the appropriate non-homogeneous Maxwell’s equations to both operations, we obtained an additional symmetric term in the tensor, named as “compensating term”. Analyzing the structure of this “compensating term”, (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark  
  • Two- and Three-Particle Systems in Relativistic Schrödinger Theory.T. Beck & M. Sorg - 2007 - Foundations of Physics 37 (7):1093-1147.
    The relativistic Schrödinger theory (RST) for N-fermion systems is further elaborated with respect to three fundamental problems which must emerge in any relativistic theory of quantum matter: (i) emergence/suppression of exchange forces between identical/non-identical particles, (ii) self-interactions, (iii) non-relativistic approximation. These questions are studied in detail for two- and three-particle systems but the results do apply to a general N-particle system. As a concrete demonstration, the singlet and triplet configurations of the positronium groundstate are considered within the RST framework, including (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • De Sitter Relativity: A New Road to Quantum Gravity? [REVIEW]R. Aldrovandi & J. G. Pereira - 2009 - Foundations of Physics 39 (1):1-19.
    The Poincaré group generalizes the Galilei group for high-velocity kinematics. The de Sitter group is assumed to go one step further, generalizing Poincaré as the group governing high-energy kinematics. In other words, ordinary special relativity is here replaced by de Sitter relativity. In this theory, the cosmological constant Λ is no longer a free parameter, and can be determined in terms of other quantities. When applied to the whole universe, it is able to predict the value of Λ and to (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  • Quantum Mechanics Emerges From Information Theory Applied to Causal Horizons.Jae-Weon Lee - 2011 - Foundations of Physics 41 (4):744-753.
    It is suggested that quantum mechanics is not fundamental but emerges from classical information theory applied to causal horizons. The path integral quantization and quantum randomness can be derived by considering information loss of fields or particles crossing Rindler horizons for accelerating observers. This implies that information is one of the fundamental roots of all physical phenomena. The connection between this theory and Verlinde’s entropic gravity theory is also investigated.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Vectorial Form of the Successive Lorentz Transformations. Application: Thomas Rotation. [REVIEW]Riad Chamseddine - 2012 - Foundations of Physics 42 (4):488-511.
    A complete treatment of the Thomas rotation involves algebraic manipulations of overwhelming complexity. In this paper, we show that a choice of convenient vectorial forms for the relativistic addition law of velocities and the successive Lorentz transformations allows us to obtain straightforwardly the Thomas rotation angle by three new methods: (a) direct computation as the angle between the composite vectors of the non-collinear velocities, (b) vectorial approach, and (c) matrix approach. The new expression of the Thomas rotation angle permits us (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relativistic Dynamics of Accelerating Particles Derived From Field Equations.Anatoli Babin & Alexander Figotin - 2012 - Foundations of Physics 42 (8):996-1014.
    In relativistic mechanics the energy-momentum of a free point mass moving without acceleration forms a four-vector. Einstein’s celebrated energy-mass relation E=mc 2 is commonly derived from that fact. By contrast, in Newtonian mechanics the mass is introduced for an accelerated motion as a measure of inertia. In this paper we rigorously derive the relativistic point mechanics and Einstein’s energy-mass relation using our recently introduced neoclassical field theory where a charge is not a point but a distribution. We show that both (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • The Geometry of the Rotating Disk in the Special Theory of Relativity.Adolf Grünbaum & Allen I. Janis - 1977 - Synthese 34 (3):281 - 299.
  • On the Michelson-Morley Experiment.Marco Mamone Capria & Fernanda Pambianco - 1994 - Foundations of Physics 24 (6):885-899.
    A rigorous wave-theoretic approach to the Michelson-Morley (M-M) experiment is presented, with special emphasis on the Huygens' principle derivation of the laws of reflection by a moving mirror. A detailed discussion of the Lorentz-Fitzgerald contraction hypothesis (CH) is included. Several mistakes appearing in the standard textbook treatments of these issues are pointed out, and a number of related historical questions are considered.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Formal Statement of the Special Principle of Relativity.Marton Gomori & Laszlo E. Szabo - 2015 - Synthese 192 (7):1-24.
    While there is a longstanding discussion about the interpretation of the extended, general principle of relativity, there seems to be a consensus that the special principle of relativity is absolutely clear and unproblematic. However, a closer look at the literature on relativistic physics reveals a more confusing picture. There is a huge variety of, sometimes metaphoric, formulations of the relativity principle, and there are different, sometimes controversial, views on its actual content. The aim of this paper is to develop a (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • How Do “Virtual” Photons and Mesons Transmit Forces Between Charged Particles and Nucleons?C. W. Rietdijk - 1977 - Foundations of Physics 7 (5-6):351-374.
    Examining the process of action at a distance, we arrive at the following conclusions: (a) The virtual photons and mesons transmitting Coulomb and nuclear forces, respectively, do not arise from “temporary violations of energy conservation,” but, on the contrary, exactly embody the potential energy corresponding to the relevant forceF that they transmit on their collision with the charged particles or nucleons via the formula Δp=FΔt. (b) In the case of an attractive force, the energy of these photons and mesons is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Who's Afraid of Absolute Space?John Earman - 1970 - Australasian Journal of Philosophy 48 (3):287-319.
  • The Physical Basis of Astronomical Aberration.S. J. Prokhovnik & W. T. Morris - 1989 - Foundations of Physics 19 (5):531-539.
    The mechanism of stellar aberration was explained and formulated by Bradley in terms of the existence of a unique reference frame for light propagation. However, Einstein's denial of the existence of such a frame appears to undermine Bradley's interpretation of the phenomenon. It is suggested that the recent evidence for a cosmologically-based inertial reference frame provides a new physical basis for Bradley's explanation in a manner consistent with the requirements of special relativity. It is shown that a “delay” effect is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Strangeness of Matter Waves.Christian Cormier-Delanoue - 1996 - Foundations of Physics 26 (1):95-103.
    The concept of waves associated with any material particle has been a considerable boost to theoretical physics, and it appears to be in accordance with many experimental results. Some relativistic properties of these assumed waves are studied in comparison to other physical waves. It turns out that matter waves may nor be considered as objectively real, and that any physics resting on such a concept can only be subjective.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Extension of Trigonometric and Hyperbolic Functions to Vectorial Arguments and its Application to the Representation of Rotations and Lorentz Transformations.H. Yamasaki - 1983 - Foundations of Physics 13 (11):1139-1154.
    The use of the axial vector representing a three-dimensional rotation makes the rotation representation much more compact by extending the trigonometric functions to vectorial arguments. Similarly, the pure Lorentz transformations are compactly treated by generalizing a scalar rapidity to a vector quantity in spatial three-dimensional cases and extending hyperbolic functions to vectorial arguments. A calculation of the Wigner rotation simplified by using the extended functions illustrates the fact that the rapidity vector space obeys hyperbolic geometry. New representations bring a Lorentz-invariant (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Revised Robertson's Test Theory of Special Relativity.José G. Vargas - 1984 - Foundations of Physics 14 (7):625-651.
    The only test theory used by workers in the field of testing special relativity to analyze the significance of their experiments is the proof by H. P. Robertson [Rev. Mod. Phys. 21, 378 (1949)] of the Lorentz transformations from the results of the experimental evidence. Some researchers would argue that the proof contains an unwarranted assumption disguised as a convention about synchronization procedures. Others would say that alternative conventions are possible. In the present paper, no convention is used, but the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Relativistic Description of a Rotating Disk with Angular Acceleration.Ø Grøn - 1979 - Foundations of Physics 9 (5-6):353-369.
    A rotating disk with angular acceleration is given a relativistic description as observed from the rotating rest frameR of the disk. It is shown how a non-Euclidean intrinsic spatial geometry develops inR, as the disk gets an angular velocity. The explanation of this as given by anR-observer is discussed. A recent description of the geometry inR presented by Grünbaum and Janis is criticized. The motion of light as described by use of coordinate clocks inR is discussed in connection with some (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Conventionalism in Special Relativity.Peter Mittelstaedt - 1977 - Foundations of Physics 7 (7-8):573-583.
    Reichenbach, Grünbaum, and others have argued that special relativity is based on arbitrary conventions concerning clock synchronizations. Here we present a mathematical framework which shows that this conventionality is almost equivalent to the arbitrariness in the choice of coordinates in an inertial system. Since preferred systems of coordinates can uniquely be defined by means of the Lorentz invariance of physical laws irrespective of the properties of light signals, a special clock synchronization—Einstein's standard synchrony—is selected by this principle. No further restrictions (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Reconciliation of Physics with Cosmology.M. A. Oliver - 1991 - Foundations of Physics 21 (6):665-689.
    Astronomical observations of redshifts and the cosmic background radiation show that there is a local frame of reference relative to which the solar system has a well-defined velocity. Also, in cosmology the cosmological principle implies the existence of cosmic time and unique local reference frames at all spacetime points. On the other hand, in a fundamental postulate, the theory of special relativity excludes the possibility of the velocity of the Earth from entering into theories of local physics.The theory put forward (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • The Introduction of Superluminal Lorentz Transformations: A Revisitation. [REVIEW]G. D. Maccarrone & Erasmo Recami - 1984 - Foundations of Physics 14 (5):367-407.
    We revisit the introduction of the Superluminal Lorentz transformations which carry from “bradyonic” inertial frames to “tachyonic” inertial frames, i.e., which transform time-like objects into space-like objects, andvice versa. It has long been known that special relativity can be extended to Superluminal observers only by increasing the number of dimensions of the space-time or—which is in a sense equivalent—by releasing the reality condition (i.e., introducing also imaginary quantities). In the past we always adopted the latter procedure. Here we show the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Homogeneous Gravitational Field.E. L. Schucking - 1985 - Foundations of Physics 15 (5):571-577.
    The homogeneous gravitational field is obtained from a Schwarzschild field in the limit of infinite mass.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • On the Choice of Evolutional Parameter Within a Framework of Four-Dimensional Symmetry.T. Chang - 1988 - Foundations of Physics 18 (6):651-658.
    Within the context of the variational principle, there is the freedom to choose specific evolutional parameters. Different parameters can be associated with physical time, while allowing the physical laws to preserve the property of four-dimensional symmetry. In this sense, the concept of time has flexibility. Besides proper time and relativistic time, another natural choice emerges, which is called the generalized Galilean time. We study the impact of this choice here. This approach provides a deeper understanding of the theory of special (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • On the Definition and Evolution of States in Relativistic Classical and Quantum Mechanics.L. P. Horwitz - 1992 - Foundations of Physics 22 (3):421-450.
    Some of the problems associated with the construction of a manifestly covariant relativistic quantum theory are discussed. A resolution of this problem is given in terms of the off mass shell classical and quantum mechanics of Stueckelberg, Horwitz and Piron. This theory contains many questions of interpretation, reaching deeply into the notions of time, localizability and causality. A proper generalization of the Maxwell theory of electromagnetic interaction, required for the well-posed formulation of dynamical problems of systems with electromagnetic interaction is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Dual Observers in Operational Relativity.R. Anderson & G. E. Stedman - 1977 - Foundations of Physics 7 (1-2):29-33.
    We give a tensor formulation of synchronization transformations within special relativity in order to bridge the gap between some philosophical discussions (e.g., by Grünbaum and Winnie) and the analyses given by physicists (e.g., Møller). As an application, we discuss a physical interpretation of the duality between covariant and contravariant indices in the tensor formulation.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • On a New Mathematical Framework for Fundamental Theoretical Physics.Robert E. Var - 1975 - Foundations of Physics 5 (3):407-431.
    It is shown by means of general principles and specific examples that, contrary to a long-standing misconception, the modern mathematical physics of compressible fluid dynamics provides a generally consistent and efficient language for describing many seemingly fundamental physical phenomena. It is shown to be appropriate for describing electric and gravitational force fields, the quantized structure of charged elementary particles, the speed of light propagation, relativistic phenomena, the inertia of matter, the expansion of the universe, and the physical nature of time. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • On the Two Aspects of Time: The Distinction and its Implications. [REVIEW]L. P. Horwitz, R. I. Arshansky & A. C. Elitzur - 1988 - Foundations of Physics 18 (12):1159-1193.
    The contemporary view of the fundamental role of time in physics generally ignores its most obvious characteric, namely its flow. Studies in the foundations of relativistic mechanics during the past decade have shown that the dynamical evolution of a system can be treated in a manifestly covariant way, in terms of the solution of a system of canonical Hamilton type equations, by considering the space-time coordinates and momenta ofevents as its fundamental description. The evolution of the events, as functions of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   19 citations