Citations of:
Exact and Approximate Arithmetic in an Amazonian Indigene Group
Science 306 (5695):499-503 (2004)
Add citations
You must login to add citations.
|
|
|
|
The basic human ability to treat quantitative information can be divided into two parts. With proto-arithmetical ability, based on the core cognitive abilities for subitizing and estimation, numerosities can be treated in a limited and/or approximate manner. With arithmetical ability, numerosities are processed (counted, operated on) systematically in a discrete, linear, and unbounded manner. In this paper, I study the theory of enculturation as presented by Menary (2015) as a possible explanation of how we make the move from the proto-arithmetical (...) |
|
Experimental studies indicate that nonhuman animals and infants represent numerosities above three or four approximately and that their mental number line is logarithmic rather than linear. In contrast, human children from most cultures gradually acquire the capacity to denote exact cardinal values. To explain this difference, I take an extended mind perspective, arguing that the distinctly human ability to use external representations as a complement for internal cognitive operations enables us to represent natural numbers. Reviewing neuroscientific, developmental, and anthropological evidence, (...) |
|
|
|
We present a model of how counting is learned based on the ability to perform a series of specific steps. The steps require conceptual knowledge of three components: numerosity as a property of collections; numerals; and one-to-one mappings between numerals and collections. We argue that establishing one-to-one mappings is the central feature of counting. In the literature, the so-called cardinality principle has been in focus when studying the development of counting. We submit that identifying the procedural ability to count with (...) |
|
In a dynamic world, mechanisms allowing prediction of future situations can provide a selective advantage. We suggest that memory systems differ in the degree of flexibility they offer for anticipatory behavior and put forward a corresponding taxonomy of prospection. The adaptive advantage of any memory system can only lie in what it contributes for future survival. The most flexible is episodic memory, which we suggest is part of a more general faculty of mental time travel that allows us not only (...) |
|
Why Theories of Concepts Should Not Ignore the Problem of Acquisition. No categories |
|
Empirical discussions of mental representation appeal to a wide variety of representational kinds. Some of these kinds, such as the sentential representations underlying language use and the pictorial representations of visual imagery, are thoroughly familiar to philosophers. Others have received almost no philosophical attention at all. Included in this latter category are analogue magnitude representations, which enable a wide range of organisms to primitively represent spatial, temporal, numerical, and related magnitudes. This article aims to introduce analogue magnitude representations to a (...) |
|
This paper considers non-standard analysis and a recently introduced computational methodology based on the notion of ①. The latter approach was developed with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework and in all the situations requiring these notions. Non-standard analysis is a classical purely symbolic technique that works with ultrafilters, external and internal sets, standard and non-standard numbers, etc. In its turn, the ①-based methodology does not use any of these (...) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The idea that there is a “Number Sense” (Dehaene, 1997) or “Core Knowledge” of number ensconced in a modular processing system (Carey, 2009) has gained popularity as the study of numerical cognition has matured. However, these claims are generally made with little, if any, detailed examination of which modular properties are instantiated in numerical processing. In this article, I aim to rectify this situation by detailing the modular properties on display in numerical cognitive processing. In the process, I review literature (...) |
|
|
|
|
|
Preschool children have been proven to possess nonsymbolic approximate arithmetic skills before learning how to manipulate symbolic math and thus before any formal math instruction. It has been assumed that nonsymbolic approximate math tasks necessitate the allocation of Working Memory (WM) resources. WM has been consistently shown to be an important predictor of children's math development and achievement. The aim of our study was to uncover the specific role of WM in nonsymbolic approximate math. For this purpose, we conducted a (...) |
|
Recent research has suggested that the Pirahã, an Amazonian tribe with a number-less language, are able to match quantities > 3 if the matching task does not require recall or spatial transposition. This finding contravenes previous work among the Pirahã. In this study, we re-tested the Pirahãs’ performance in the crucial one-to-one matching task utilized in the two previous studies on their numerical cognition, as well as in control tasks requiring recall and mental transposition. We also conducted a novel quantity (...) |
|
|
|
|
|
|
|
|
|
|