Citations of:
Add citations
You must login to add citations.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Quantifier expressions like “many” and “at least” are part of a rich repository of words in language representing magnitude information. The role of numerical processing in comprehending quantifiers was studied in a semantic truth value judgment task, asking adults to quickly verify sentences about visual displays using numerical or proportional quantifiers. The visual displays were composed of systematically varied proportions of yellow and blue circles. The results demonstrated that numerical estimation and numerical reference information are fundamental in encoding the meaning (...) No categories |
|
When young children attempt to locate numbers along a number line, they show logarithmic (or other compressive) placement. For example, the distance between “5” and “10” is larger than the distance between “75” and “80.” This has often been explained by assuming that children have a logarithmically scaled mental representation of number (e.g., Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi, 2010; Siegler & Opfer, 2003). However, several investigators have questioned this argument (e.g., Barth & Paladino, 2011; Cantlon, Cordes, Libertus, & Brannon, (...) |
|
Despite their importance in public discourse, numbers in the range of 1 million to 1 trillion are notoriously difficult to understand. We examine magnitude estimation by adult Americans when placing large numbers on a number line and when qualitatively evaluating descriptions of imaginary geopolitical scenarios. Prior theoretical conceptions predict a log-to-linear shift: People will either place numbers linearly or will place numbers according to a compressive logarithmic or power-shaped function (Barth & Paladino, ; Siegler & Opfer, ). While about half (...) No categories |
|
How do people stretch their understanding of magnitude from the experiential range to the very large quantities and ranges important in science, geopolitics, and mathematics? This paper empirically evaluates how and whether people make use of numerical categories when estimating relative magnitudes of numbers across many orders of magnitude. We hypothesize that people use scale words—thousand, million, billion—to carve the large number line into categories, stretching linear responses across items within each category. If so, discontinuities in position and response time (...) No categories |
|
|
|
|
|
No categories |
|
|
|
There is at present a lively debate in cognitive psychology concerning the origin of natural number concepts. At the center of this debate is the system of mental magnitudes, an innately given cognitive mechanism that represents cardinality and that performs a variety of arithmetical operations. Most participants in the debate argue that this system cannot be the sole source of natural number concepts, because they take it to represent cardinality approximately while natural number concepts are precise. In this paper, I (...) |
|
In this paper, we present a battery of empirical findings on the relationship between cultural context and theory of mind that show great variance in the onset and character of mindreading in different cultures; discuss problems that those findings cause for the largely-nativistic outlook on mindreading dominating in the literature; and point to an alternative framework that appears to better accommodate the evident cross-cultural variance in mindreading. We first outline the theoretical frameworks that dominate in mindreading research, then present the (...) No categories |
|
In spite of their practical importance, the connections between technology and mathematics have not received much scholarly attention. This article begins by outlining how the technology–mathematics relationship has developed, from the use of simple aide-mémoires for counting and arithmetic, via the use of mathematics in weaving, building and other trades, and the introduction of calculus to solve technological problems, to the modern use of computers to solve both technological and mathematical problems. Three important philosophical issues emerge from this historical résumé: (...) No categories |
|
Several advocates of the lively field of “metaphysics of science” have recently argued that a naturalistic metaphysics should be based solely on current science, and that it should replace more traditional, intuition-based, forms of metaphysics. The aim of the present paper is to assess that claim by examining the relations between metaphysics of science and general metaphysics. We show that the current metaphysical battlefield is richer and more complex than a simple dichotomy between “metaphysics of science” and “traditional metaphysics”, and (...) |
|
Much research supports the existence of an Approximate Number System (ANS) that is recruited by infants, children, adults, and non-human animals to generate coarse, non-symbolic representations of number. This system supports simple arithmetic operations such as addition, subtraction, and ordering of amounts. The current study tests whether an intuition of a more complex calculation, division, exists in an indigene group in the Amazon, the Mundurucu, whose language includes no words for large numbers. Mundurucu children were presented with a video event (...) |
|
|
|
Cohen Kadosh & Walsh (CK&W) present convincing evidence indicating the existence of notation-specific numerical representations in parietal cortex. We suggest that the same conclusions can be drawn for a particular type of numerical representation: the representation of time. Notation-dependent representations need not be limited to number but may also be extended to other magnitude-related contents processed in parietal cortex (Walsh 2003). |
|
One of the important discussions in the philosophy of mathematics, is that centered on Benacerraf’s Dilemma. Benacerraf’s dilemma challenges theorists to provide an epistemology and semantics for mathematics, based on their favourite ontology. This challenge is the point on which all philosophies of mathematics are judged, and clarifying how we might acquire mathematical knowledge is one of the main occupations of philosophers of mathematics. In this thesis I argue that this discussion has overlooked an important part of mathematics, namely mathematics (...) |
|
Tutkin tässä artikkelissa Kurt Gödelin epätäydellisyysteoreemojen tulkintoja filosofiassa. Aihepiiri kattaa valtavan määrän eri tulkintoja tekoälystä fysiikkaan ja runouteen asti. Osoitan, että kriittisesti tarkasteltuna kaikki radikaalit epätäydellisyysteoreemojen sovellukset ovat virheellisiä. |
|
What is the nature of number systems and arithmetic that we use in science for quantification, analysis, and modeling? I argue that number concepts and arithmetic are neither hardwired in the brain, nor do they exist out there in the universe. Innate subitizing and early cognitive preconditions for number— which we share with many other species—cannot provide the foundations for the precision, richness, and range of number concepts and simple arithmetic, let alone that of more complex mathematical concepts. Numbers and (...) |
|
Human cognition is extended and enacted. Drawing the boundaries of cognition to include the resources and attributes of the body and materiality allows an examination of how these components interact with the brain as a system, especially over cultural and evolutionary spans of time. Literacy and numeracy provide examples of multigenerational, incremental change in both psychological functioning and material forms. Though we think materiality, its central role in human cognition is often unappreciated, for reasons that include conceptual distribution over multiple (...) |
|
In historical claims for nativism, mathematics is a paradigmatic example of innate knowledge. Claims by contemporary developmental psychologists of elementary mathematical skills in human infants are a legacy of this. However, the connection between these skills and more formal mathematical concepts and methods remains unclear. This paper assesses the current debates surrounding nativism and mathematical knowledge by teasing them apart into two distinct claims. First, in what way does the experimental evidence from infants, nonhuman animals and neuropsychology support the nativist (...) |
|
Article Authors Metrics Comments Media Coverage Abstract Author Summary Introduction Results Discussion Supporting information Acknowledgments Author Contributions References Reader Comments (0) Media Coverage (0) Figures Abstract During language processing, humans form complex embedded representations from sequential inputs. Here, we ask whether a “geometrical language” with recursive embedding also underlies the human ability to encode sequences of spatial locations. We introduce a novel paradigm in which subjects are exposed to a sequence of spatial locations on an octagon, and are asked to (...) No categories |
|
Kant argued that Euclidean geometry is synthesized on the basis of an a priori intuition of space. This proposal inspired much behavioral research probing whether spatial navigation in humans and animals conforms to the predictions of Euclidean geometry. However, Euclidean geometry also includes concepts that transcend the perceptible, such as objects that are infinitely small or infinitely large, or statements of necessity and impossibility. We tested the hypothesis that certain aspects of nonperceptible Euclidian geometry map onto intuitions of space that (...) |
|
Des branches entières des mathématiques sont fondées sur des liens posés entre les nombres et l’espace : mesure de longueurs, définition de repères et de coordonnées, projection des nombres complexes sur le plan… Si les nombres complexes, comme l’utilisation de repères, sont apparus relativement récemment (vers le XVIIe siècle), la mesure des longueurs est en revanche un procédé très ancien, qui remonte au moins au 3e ou 4e millénaire av. J-C. Loin d’être fortuits, ces liens entre les nombres et l’espace (...) |
|
Developing earlier studies of the system of numbers in Mundurucu, this paper argues that the Mundurucu numeral system is far more complex than usually assumed. The Mundurucu numeral system provides indirect but insightful arguments for a modular approach to numbers and numerals. It is argued that distinct components must be distinguished, such as a system of representation of numbers in the format of internal magnitudes, a system of representation for individuals and sets, and one-to-one correspondences between the numerosity expressed by (...) |
|
|
|
|
|
|
|
|
|
|
|
A crucial aspect of the human mind is the ability to project the self along the time line to past and future. It has been argued that such self-projection is essential to re-experience past experiences and predict future events. In-depth analysis of a novel paradigm investigating mental time shows that the speed of this “self-projection” in time depends logarithmically on the temporal-distance between an imagined “location” on the time line that participants were asked to imagine and the location of another (...) |
|
|
|
Characterizing different kinds of representation is of fundamental importance to cognitive science, and one traditional way of doing so is in terms of the analog–digital distinction. Indeed the distinction is often appealed to in ways both narrow and broad. In this paper I argue that the analog–digital distinction does not apply to representational schemes but only to representational systems, where a representational system is constituted by a representational scheme and its user, and that whether a representational system is analog or (...) |