Switch to: References

Add citations

You must login to add citations.
  1. Rational analysis, intractability, and the prospects of ‘as if’-explanations.Iris van Rooij, Johan Kwisthout, Todd Wareham & Cory Wright - 2018 - Synthese 195 (2):491-510.
    Despite their success in describing and predicting cognitive behavior, the plausibility of so-called ‘rational explanations’ is often contested on the grounds of computational intractability. Several cognitive scientists have argued that such intractability is an orthogonal pseudoproblem, however, since rational explanations account for the ‘why’ of cognition but are agnostic about the ‘how’. Their central premise is that humans do not actually perform the rational calculations posited by their models, but only act as if they do. Whether or not the problem (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • A quantum-information-theoretic complement to a general-relativistic implementation of a beyond-Turing computer.Christian Wüthrich - 2015 - Synthese 192 (7):1989-2008.
    There exists a growing literature on the so-called physical Church-Turing thesis in a relativistic spacetime setting. The physical Church-Turing thesis is the conjecture that no computing device that is physically realizable can exceed the computational barriers of a Turing machine. By suggesting a concrete implementation of a beyond-Turing computer in a spacetime setting, Istvan Nemeti and Gyula David have shown how an appreciation of the physical Church-Turing thesis necessitates the confluence of mathematical, computational, physical, and indeed cosmological ideas. In this (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Neural Computation and the Computational Theory of Cognition.Gualtiero Piccinini & Sonya Bahar - 2013 - Cognitive Science 37 (3):453-488.
    We begin by distinguishing computationalism from a number of other theses that are sometimes conflated with it. We also distinguish between several important kinds of computation: computation in a generic sense, digital computation, and analog computation. Then, we defend a weak version of computationalism—neural processes are computations in the generic sense. After that, we reject on empirical grounds the common assimilation of neural computation to either analog or digital computation, concluding that neural computation is sui generis. Analog computation requires continuous (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   61 citations  
  • How to Make a Meaningful Comparison of Models: The Church–Turing Thesis Over the Reals.Maël Pégny - 2016 - Minds and Machines 26 (4):359-388.
    It is commonly believed that there is no equivalent of the Church–Turing thesis for computation over the reals. In particular, computational models on this domain do not exhibit the convergence of formalisms that supports this thesis in the case of integer computation. In the light of recent philosophical developments on the different meanings of the Church–Turing thesis, and recent technical results on analog computation, I will show that this current belief confounds two distinct issues, namely the extension of the notion (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Les deux formes de la thèse de Church-Turing et l’épistémologie du calcul.Maël Pégny - 2012 - Philosophia Scientiae 16:39-67.
    La thèse de Church-Turing stipule que toute fonction calculable est calculable par une machine de Turing. En distinguant, à la suite de nombreux auteurs, une forme algorithmique de la thèse de Church-Turing portant sur les fonctions calculables par un algorithme d’une forme empirique de cette même thèse, portant sur les fonctions calculables par une machine, il devient possible de poser une nouvelle question : les limites empiriques du calcul sont-elles identiques aux limites des algorithmes? Ou existe-t-il un moyen empirique d’effectuer (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Practical Intractability: A Critique of the Hypercomputation Movement. [REVIEW]Aran Nayebi - 2014 - Minds and Machines 24 (3):275-305.
    For over a decade, the hypercomputation movement has produced computational models that in theory solve the algorithmically unsolvable, but they are not physically realizable according to currently accepted physical theories. While opponents to the hypercomputation movement provide arguments against the physical realizability of specific models in order to demonstrate this, these arguments lack the generality to be a satisfactory justification against the construction of any information-processing machine that computes beyond the universal Turing machine. To this end, I present a more (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Turing-, human- and physical computability: An unasked question. [REVIEW]Eli Dresner - 2008 - Minds and Machines 18 (3):349-355.
    In recent years it has been convincingly argued that the Church-Turing thesis concerns the bounds of human computability: The thesis was presented and justified as formally delineating the class of functions that can be computed by a human carrying out an algorithm. Thus the Thesis needs to be distinguished from the so-called Physical Church-Turing thesis, according to which all physically computable functions are Turing computable. The latter is often claimed to be false, or, if true, contingently so. On all accounts, (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   2 citations