Switch to: References

Add citations

You must login to add citations.
  1. An Isomorphism Between Monoids of External Embeddings About Definability in Arithmetic.Mihai Prunescu - 2002 - Journal of Symbolic Logic 67 (2):598-620.
    We use a new version of the Definability Theoremof Beth in order to unify classical theorems of Yuri Matiyasevich and Jan Denef in one structural statement. We give similar forms for other important definability results from Arithmetic and Number Theory.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  • Scientific Realism and Perception. [REVIEW]Raimo Tuomela - 1978 - British Journal for the Philosophy of Science 29 (1):87-104.
  • Waging War on Pascal’s Wager.Alan Hájek - 2003 - Philosophical Review 112 (1):27-56.
    Pascal’s Wager is simply too good to be true—or better, too good to be sound. There must be something wrong with Pascal’s argument that decision-theoretic reasoning shows that one must (resolve to) believe in God, if one is rational. No surprise, then, that critics of the argument are easily found, or that they have attacked it on many fronts. For Pascal has given them no dearth of targets.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  • Truth Via Satisfaction?Nicholas J. J. Smith - 2017 - In Pavel Arazim & Tomas Lavicka (eds.), The Logica Yearbook 2016. London: College Publications. pp. 273-287.
    One of Tarski’s stated aims was to give an explication of the classical conception of truth—truth as ‘saying it how it is’. Many subsequent commentators have felt that he achieved this aim. Tarski’s core idea of defining truth via satisfaction has now found its way into standard logic textbooks. This paper looks at such textbook definitions of truth in a model for standard first-order languages and argues that they fail from the point of view of explication of the classical notion (...)
     
    Export citation  
     
    Bookmark  
  • Labyrinth of Continua†.Patrick Reeder - 2018 - Philosophia Mathematica 26 (1):1-39.
    This is a survey of the concept of continuity. Efforts to explicate continuity have produced a plurality of philosophical conceptions of continuity that have provably distinct expressions within contemporary mathematics. I claim that there is a divide between the conceptions that treat the whole continuum as prior to its parts, and those conceptions that treat the parts of the continuum as prior to the whole. Along this divide, a tension emerges between those conceptions that favor philosophical idealizations of continuity and (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Do Simple Infinitesimal Parts Solve Zeno’s Paradox of Measure?Lu Chen - forthcoming - Synthese.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Enciclopédia de Termos Lógico-Filosóficos.João Branquinho, Desidério Murcho & Nelson Gonçalves Gomes (eds.) - 2006 - São Paulo, SP, Brasil: Martins Fontes.
    Esta enciclopédia abrange, de uma forma introdutória mas desejavelmente rigorosa, uma diversidade de conceitos, temas, problemas, argumentos e teorias localizados numa área relativamente recente de estudos, os quais tem sido habitual qualificar como «estudos lógico-filosóficos». De uma forma apropriadamente genérica, e apesar de o território teórico abrangido ser extenso e de contornos por vezes difusos, podemos dizer que na área se investiga um conjunto de questões fundamentais acerca da natureza da linguagem, da mente, da cognição e do raciocínio humanos, bem (...)
    Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark   5 citations  
  • Zur Mathematischen Wissenschaftsphilosophie des Marburger Neukantianismus.Thomas Mormann - 2018 - In Christian Damböck (ed.), Philosophie und Wissenschaft bei Hermann Cohen, Veröffentlichungen des Instituts Wiener Kreis, Bd. 28. Wien: Springer. pp. 101 - 133.
  • The Role of Mathematics in Deleuze’s Critical Engagement with Hegel.Simon Duffy - 2009 - International Journal of Philosophical Studies 17 (4):563 – 582.
    The role of mathematics in the development of Gilles Deleuze's (1925-95) philosophy of difference as an alternative to the dialectical philosophy determined by the Hegelian dialectic logic is demonstrated in this paper by differentiating Deleuze's interpretation of the problem of the infinitesimal in Difference and Repetition from that which G. W. F Hegel (1770-1831) presents in the Science of Logic . Each deploys the operation of integration as conceived at different stages in the development of the infinitesimal calculus in his (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In defense (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • What Makes a Theory of Infinitesimals Useful? A View by Klein and Fraenkel.Vladimir Kanovei, K. Katz, M. Katz & Thomas Mormann - 2018 - Journal of Humanistic Mathematics 8 (1):108 - 119.
    Felix Klein and Abraham Fraenkel each formulated a criterion for a theory of infinitesimals to be successful, in terms of the feasibility of implementation of the Mean Value Theorem. We explore the evolution of the idea over the past century, and the role of Abraham Robinson's framework therein.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematische Wissenschaftsphilosophie Im Marburger Neukantianismus.Thomas Mormann - 2019 - Siegener Beiträge Zur Geschichte Und Philosophie der Mathematik 11:55 - 75.
    No categories
    Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • The Ontological Commitments of Inconsistent Theories.Mark Colyvan - 2008 - Philosophical Studies 141 (1):115 - 123.
    In this paper I present an argument for belief in inconsistent objects. The argument relies on a particular, plausible version of scientific realism, and the fact that often our best scientific theories are inconsistent. It is not clear what to make of this argument. Is it a reductio of the version of scientific realism under consideration? If it is, what are the alternatives? Should we just accept the conclusion? I will argue (rather tentatively and suitably qualified) for a positive answer (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • Stupne Nekonzistentnosti.Ladislav Kvasz - 2012 - Organon F: Medzinárodný Časopis Pre Analytickú Filozofiu 19:95-115.
    Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Exploring Argumentation, Objectivity, and Bias: The Case of Mathematical Infinity.Mamolo Ami - unknown
    This paper presents an overview of several years of my research into individuals’ reasoning, argumentation, and bias when addressing problems, scenarios, and symbols related to mathematical infinity. There is a long history of debate around what constitutes “objective truth” in the realm of mathematical infinity, dating back to ancient Greece. Modes of argumentation, hindrances, and intuitions have been largely consistent over the years and across levels of expertise. This presentation examines the interrelated complexities of notions of objectivity, bias, and argumentation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Life’s Demons: Information and Order in Biology.Philippe M. Binder & Antoine Danchin - 2011 - EMBO Reports 12 (6):495-499.
    Two decades ago, Rolf Landauer (1991) argued that “information is physical” and ought to have a role in the scientific analysis of reality comparable to that of matter, energy, space and time. This would also help to bridge the gap between biology and mathematics and physics. Although it can be argued that we are living in the ‘golden age’ of biology, both because of the great challenges posed by medicine and the environment and the significant advances that have been made—especially (...)
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark   2 citations  
  • Millian Superiorities and the Repugnant Conclusion.Karsten Klint Jensen - 2008 - Utilitas 20 (3):279-300.
    James Griffin has considered a form of superiority in value that is weaker than lexical priority as a possible remedy to the Repugnant Conclusion. In this article, I demonstrate that, in a context where value is additive, this weaker form collapses into the stronger form of superiority. And in a context where value is non-additive, weak superiority does not amount to a radical value difference at all. These results are applied on one of Larry Temkin's cases against transitivity. I demonstrate (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Against Pointillisme About Mechanics.Jeremy Butterfield - 2006 - British Journal for the Philosophy of Science 57 (4):709-753.
    This paper forms part of a wider campaign: to deny pointillisme, the doctrine that a physical theory's fundamental quantities are defined at points of space or of spacetime, and represent intrinsic properties of such points or point-sized objects located there; so that properties of spatial or spatiotemporal regions and their material contents are determined by the point-by-point facts. More specifically, this paper argues against pointillisme about the concept of velocity in classical mechanics; especially against proposals by Tooley, Robinson and Lewis. (...)
    Direct download (13 more)  
     
    Export citation  
     
    Bookmark   37 citations  
  • The Development of Mathematics. [REVIEW]Donald Gillies - 1978 - British Journal for the Philosophy of Science 29:68-87.
  • On Infinite Number and Distance.Jeremy Gwiazda - 2012 - Constructivist Foundations 7 (2):126-130.
    Context: The infinite has long been an area of philosophical and mathematical investigation. There are many puzzles and paradoxes that involve the infinite. Problem: The goal of this paper is to answer the question: Which objects are the infinite numbers (when order is taken into account)? Though not currently considered a problem, I believe that it is of primary importance to identify properly the infinite numbers. Method: The main method that I employ is conceptual analysis. In particular, I argue that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bolzano’s Infinite Quantities.Kateřina Trlifajová - 2018 - Foundations of Science 23 (4):681-704.
    In his Foundations of a General Theory of Manifolds, Georg Cantor praised Bernard Bolzano as a clear defender of actual infinity who had the courage to work with infinite numbers. At the same time, he sharply criticized the way Bolzano dealt with them. Cantor’s concept was based on the existence of a one-to-one correspondence, while Bolzano insisted on Euclid’s Axiom of the whole being greater than a part. Cantor’s set theory has eventually prevailed, and became a formal basis of contemporary (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Independence of the Grossone-Based Infinity Methodology From Non-Standard Analysis and Comments Upon Logical Fallacies in Some Texts Asserting the Opposite.Yaroslav D. Sergeyev - 2019 - Foundations of Science 24 (1):153-170.
    This paper considers non-standard analysis and a recently introduced computational methodology based on the notion of ①. The latter approach was developed with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework and in all the situations requiring these notions. Non-standard analysis is a classical purely symbolic technique that works with ultrafilters, external and internal sets, standard and non-standard numbers, etc. In its turn, the ①-based methodology does not use any of these (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  • Edward Nelson.Mikhail G. Katz & Semen S. Kutateladze - 2015 - Review of Symbolic Logic 8 (3):607-610.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Cauchy’s Infinitesimals, His Sum Theorem, and Foundational Paradigms.Tiziana Bascelli, Piotr Błaszczyk, Alexandre Borovik, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Thomas McGaffey, David M. Schaps & David Sherry - 2018 - Foundations of Science 23 (2):267-296.
    Cauchy's sum theorem is a prototype of what is today a basic result on the convergence of a series of functions in undergraduate analysis. We seek to interpret Cauchy’s proof, and discuss the related epistemological questions involved in comparing distinct interpretive paradigms. Cauchy’s proof is often interpreted in the modern framework of a Weierstrassian paradigm. We analyze Cauchy’s proof closely and show that it finds closer proxies in a different modern framework.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Is Leibnizian Calculus Embeddable in First Order Logic?Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Taras Kudryk, Thomas Mormann & David Sherry - 2017 - Foundations of Science 22 (4):73 - 88.
    To explore the extent of embeddability of Leibnizian infinitesimal calculus in first-order logic (FOL) and modern frameworks, we propose to set aside ontological issues and focus on pro- cedural questions. This would enable an account of Leibnizian procedures in a framework limited to FOL with a small number of additional ingredients such as the relation of infinite proximity. If, as we argue here, first order logic is indeed suitable for developing modern proxies for the inferential moves found in Leibnizian infinitesimal (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Maps, Languages, and Manguages: Rival Cognitive Architectures?Kent Johnson - 2015 - Philosophical Psychology 28 (6):815-836.
    Provided we agree about the thing, it is needless to dispute about the terms. —David Hume, A treatise of human nature, Book 1, section VIIMap-like representations are frequently invoked as an alternative type of representational vehicle to a language of thought. This view presupposes that map-systems and languages form legitimate natural kinds of cognitive representational systems. I argue that they do not, because the collections of features that might be taken as characteristic of maps or languages do not themselves provide (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Gregory’s Sixth Operation.Tiziana Bascelli, Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Tahl Nowik, David M. Schaps & David Sherry - 2018 - Foundations of Science 23 (1):133-144.
    In relation to a thesis put forward by Marx Wartofsky, we seek to show that a historiography of mathematics requires an analysis of the ontology of the part of mathematics under scrutiny. Following Ian Hacking, we point out that in the history of mathematics the amount of contingency is larger than is usually thought. As a case study, we analyze the historians’ approach to interpreting James Gregory’s expression ultimate terms in his paper attempting to prove the irrationality of \. Here (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Formalización de la ontología del tiempo en Deleuze.Ignacio Gonzalez Garcia - 2017 - Endoxa 40:311.
    No categories
    Direct download (5 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Regularity and Hyperreal Credences.Kenny Easwaran - 2014 - Philosophical Review 123 (1):1-41.
    Many philosophers have become worried about the use of standard real numbers for the probability function that represents an agent's credences. They point out that real numbers can't capture the distinction between certain extremely unlikely events and genuinely impossible ones—they are both represented by credence 0, which violates a principle known as “regularity.” Following Skyrms 1980 and Lewis 1980, they recommend that we should instead use a much richer set of numbers, called the “hyperreals.” This essay argues that this popular (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   33 citations  
  • The Importance of Nonexistent Objects and of Intensionality in Mathematics.Richard Sylvan - 2003 - Philosophia Mathematica 11 (1):20-52.
    In this article, extracted from his book Exploring Meinong's Jungle and Beyond, Sylvan argues that, contrary to widespread opinion, mathematics is not an extensional discipline and cannot be extensionalized without considerable damage. He argues that some of the insights of Meinong's theory of objects, and its modern development, item theory, should be applied to mathematics and that mathematical objects and structures should be treated as mind-independent, non-existent objects.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark  
  • Feminist Philosophy of Science1.Lynn Hankinson Nelson - 2002 - In Peter Machamer Michael Silberstein (ed.), The Blackwell Guide to the Philosophy of Science. Blackwell. pp. 312.
  • Physics of Brain-Mind Interaction.John C. Eccles - 1990 - Behavioral and Brain Sciences 13 (4):662-663.
  • Are There Really Instantaneous Velocities?Frank Arntzenius - 2000 - The Monist 83 (2):187-208.
    Zeno argued that since at any instant an arrow does not change its location, the arrow does not move at any time, and hence motion is impossible. I discuss the following three views that one could take in view of Zeno's argument:(i) the "at-at" theory, according to which there is no such thing as instantaneous velocity, while motion in the sense of the occupation of different locations at different times is possible,(ii) the "impetus" theory, according to which instantaneous velocities do (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   38 citations  
  • Intellect and Concept.Gurpreet Rattan - 2009 - The Baltic International Yearbook of Cognition, Logic and Communication 5.
    The connections between theories of concepts and issues of knowledge and epistemic normativity are complex and controversial. According to the general, broadly Fregean, view that stands in the background of this paper, these connections are taken not only to exist, but also to be fundamental to issues about the individuation of concepts. This kind of view fleshed out should clarify the nature and role of epistemic norms, and of different kinds of epistemic norms, in concept individuation. This paper takes up (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • New Directions for Nominalist Philosophers of Mathematics.Charles Chihara - 2010 - Synthese 176 (2):153 - 175.
    The present paper will argue that, for too long, many nominalists have concentrated their researches on the question of whether one could make sense of applications of mathematics (especially in science) without presupposing the existence of mathematical objects. This was, no doubt, due to the enormous influence of Quine's "Indispensability Argument", which challenged the nominalist to come up with an explanation of how science could be done without referring to, or quantifying over, mathematical objects. I shall admonish nominalists to enlarge (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Fragment of Nonstandard Analysis with a Finitary Consistency Proof.Michal Rössler & Emil Jeřábek - 2007 - Bulletin of Symbolic Logic 13 (1):54-70.
    We introduce a nonstandard arithmetic $NQA^-$ based on the theory developed by R. Chuaqui and P. Suppes in [2] (we will denote it by $NQA^+$ ), with a weakened external open minimization schema. A finitary consistency proof for $NQA^-$ formalizable in PRA is presented. We also show interesting facts about the strength of the theories $NQA^-$ and $NQA^+$ ; $NQA^-$ is mutually interpretable with $I\Delta_0 + EXP$ , and on the other hand, $NQA^+$ interprets the theories IΣ1 and $WKL_0$.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Toward a History of Mathematics Focused on Procedures.Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze & David Sherry - 2017 - Foundations of Science 22 (4):763-783.
    Abraham Robinson’s framework for modern infinitesimals was developed half a century ago. It enables a re-evaluation of the procedures of the pioneers of mathematical analysis. Their procedures have been often viewed through the lens of the success of the Weierstrassian foundations. We propose a view without passing through the lens, by means of proxies for such procedures in the modern theory of infinitesimals. The real accomplishments of calculus and analysis had been based primarily on the elaboration of novel techniques for (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Philosophy of Mathematics: Making a Fresh Start.Carlo Cellucci - 2013 - Studies in History and Philosophy of Science Part A 44 (1):32-42.
    The paper distinguishes between two kinds of mathematics, natural mathematics which is a result of biological evolution and artificial mathematics which is a result of cultural evolution. On this basis, it outlines an approach to the philosophy of mathematics which involves a new treatment of the method of mathematics, the notion of demonstration, the questions of discovery and justification, the nature of mathematical objects, the character of mathematical definition, the role of intuition, the role of diagrams in mathematics, and the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Mathematical Intelligencer Flunks the Olympics.Alexander E. Gutman, Mikhail G. Katz, Taras S. Kudryk & Semen S. Kutateladze - 2017 - Foundations of Science 22 (3):539-555.
    The Mathematical Intelligencer recently published a note by Y. Sergeyev that challenges both mathematics and intelligence. We examine Sergeyev’s claims concerning his purported Infinity computer. We compare his grossone system with the classical Levi-Civita fields and with the hyperreal framework of A. Robinson, and analyze the related algorithmic issues inevitably arising in any genuine computer implementation. We show that Sergeyev’s grossone system is unnecessary and vague, and that whatever consistent subsystem could be salvaged is subsumed entirely within a stronger and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Whole and Part in Mathematics.John L. Bell - 2004 - Axiomathes 14 (4):285-294.
    The centrality of the whole/part relation in mathematics is demonstrated through the presentation and analysis of examples from algebra, geometry, functional analysis,logic, topology and category theory.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Present Situation in Quantum Theory and its Merging with General Relativity.Andrei Khrennikov - 2017 - Foundations of Physics 47 (8):1077-1099.
    We discuss the problems of quantum theory complicating its merging with general relativity. QT is treated as a general theory of micro-phenomena—a bunch of models. Quantum mechanics and quantum field theory are the most widely known. The basic problems of QM and QFT are considered in interrelation. For QM, we stress its nonrelativistic character and the presence of spooky action at a distance. For QFT, we highlight the old problem of infinities. And this is the main point of the paper: (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Interpreting the Infinitesimal Mathematics of Leibniz and Euler.Jacques Bair, Piotr Błaszczyk, Robert Ely, Valérie Henry, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Thomas McGaffey, Patrick Reeder, David M. Schaps, David Sherry & Steven Shnider - 2017 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (2):195-238.
    We apply Benacerraf’s distinction between mathematical ontology and mathematical practice to examine contrasting interpretations of infinitesimal mathematics of the seventeenth and eighteenth century, in the work of Bos, Ferraro, Laugwitz, and others. We detect Weierstrass’s ghost behind some of the received historiography on Euler’s infinitesimal mathematics, as when Ferraro proposes to understand Euler in terms of a Weierstrassian notion of limit and Fraser declares classical analysis to be a “primary point of reference for understanding the eighteenth-century theories.” Meanwhile, scholars like (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Perceiving the Infinite and the Infinitesimal World: Unveiling and Optical Diagrams in Mathematics. [REVIEW]Lorenzo Magnani & Riccardo Dossena - 2005 - Foundations of Science 10 (1):7-23.
    Many important concepts of the calculus are difficult to grasp, and they may appear epistemologically unjustified. For example, how does a real function appear in “small” neighborhoods of its points? How does it appear at infinity? Diagrams allow us to overcome the difficulty in constructing representations of mathematical critical situations and objects. For example, they actually reveal the behavior of a real function not “close to” a point (as in the standard limit theory) but “in” the point. We are interested (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Contradictions in Motion: Why They’Re Not Needed and Why They Wouldn’T Help.Emiliano Boccardi & Moisés Macías-Bustos - 2017 - Humana Mente 10 (32):195-227.
    In this paper we discuss Priest’s account of change and motion, contrasting it with its more orthodox rival, the Russellian account. The paper is divided in two parts. In first one we take a stance that is more sympathetic to the Russellian view, arguing that Priest’s arguments against it are inconclusive. In the second part, instead, we take a more sympathetic attitude towards Priest’s objections. We argue, however, that if these objections pose insurmountable difficulties to the Russellian account, then they (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Scientific Pluralism, Consistency Preservation, and Inconsistency Toleration.Otávio Bueno - 2017 - Humana Mente 10 (32):229-245.
    Scientific pluralism is the view according to which there is a plurality of scientific domains and of scientific theories, and these theories are empirically adequate relative to their own respective domains. Scientific monism is the view according to which there is a single domain to which all scientific theories apply. How are these views impacted by the presence of inconsistent scientific theories? There are consistency-preservation strategies and inconsistency-toleration strategies. Among the former, two prominent strategies can be articulated: Compartmentalization and Information (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  • “On the Plausibility of Nonstandard Proofs in Analysis”.M. E. Szabo E. J. Farkas - 1984 - Dialectica 38 (4):297-310.
    SummaryWe present a systematic discussion of the structural and conceptual simplifications of proofs of standard theorems afforded by nonstandard methods and examine to what extent the resulting nonstandard proofs satisfy the informal criterion of “plausibility”. We introduce the concept of a “standard detour” and show that all nonstandard proofs considered avoid such detours. Among the proofs examined are proofs of the Intermediate Value Theorem, the Riemann Integration Theorem, the Spectral Theorem for compact Hermitian operators, and the Arzela‐Ascoli Theorem.RésuméNous discutons systématiquement (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Compactification of Groups and Rings and Nonstandard Analysis.Abraham Robinson - 1969 - Journal of Symbolic Logic 34 (4):576-588.
  • Kant on the Construction and Composition of Motion in the Phoronomy.Daniel Sutherland - 2014 - Canadian Journal of Philosophy 44 (5-6):686-718.
    This paper examines the role of Kant's theory of mathematical cognition in his phoronomy, his pure doctrine of motion. I argue that Kant's account of how we can construct the composition of motion rests on the construction of extended intervals of space and time, and the representation of the identity of the part–whole relations the construction of these intervals allow. Furthermore, the construction of instantaneous velocities and their composition also rests on the representation of extended intervals of space and time, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • First-Order Definability in Modal Logic.R. I. Goldblatt - 1975 - Journal of Symbolic Logic 40 (1):35-40.
    It is shown that a formula of modal propositional logic has precisely the same models as a sentence of the first-order language of a single dyadic predicate iff its class of models is closed under ultraproducts. as a corollary, any modal formula definable by a set of first-order conditions is always definable by a single such condition. these results are then used to show that the formula (lmp 'validates' mlp) is not first-order definable.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • Against Pointillisme About Geometry.Jeremy Butterfield - 2005 - In Michael Stöltzner & Friedrich Stadler (eds.), Time and History: Proceedings of the 28. International Ludwig Wittgenstein Symposium, Kirchberg Am Wechsel, Austria 2005. De Gruyter. pp. 181-222.
    This paper forms part of a wider campaign: to deny pointillisme. That is the doctrine that a physical theory's fundamental quantities are defined at points of space or of spacetime, and represent intrinsic properties of such points or point-sized objects located there; so that properties of spatial or spatiotemporal regions and their material contents are determined by the point-by-point facts. More specifically, this paper argues against pointillisme about the structure of space and-or spacetime itself, especially a paper by Bricker (1993). (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations