Switch to: References

Add citations

You must login to add citations.
  1. Relational Quantum Mechanics, quantum relativism, and the iteration of relativity.Timotheus Riedel - 2024 - Studies in History and Philosophy of Science Part A 104 (C):109-118.
    The idea that the dynamical properties of quantum systems are invariably relative to other systems has recently regained currency. Using Relational Quantum Mechanics (RQM) for a case study, this paper calls attention to a question that has been underappreciated in the debate about quantum relativism: the question of whether relativity iterates. Are there absolute facts about the properties one system possesses relative to a specified reference, or is this again a relative matter, and so on? It is argued that RQM (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Can We Make Sense of Relational Quantum Mechanics?Quentin Ruyant - 2018 - Foundations of Physics 48 (4):440-455.
    The relational interpretation of quantum mechanics proposes to solve the measurement problem and reconcile completeness and locality of quantum mechanics by postulating relativity to the observer for events and facts, instead of an absolute “view from nowhere”. The aim of this paper is to clarify this interpretation, and in particular, one of its central claims concerning the possibility for an observer to have knowledge about other observer’s events. I consider three possible readings of this claim, and develop the most promising (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Securing the objectivity of relative facts in the quantum world.Richard A. Healey - 2022 - Foundations of Physics 52 (4):1-20.
    This paper compares and contrasts relational quantum mechanics with a pragmatist view of quantum theory. I first explain important points of agreement. Then I point to two problems faced by RQM and sketch DP?s solutions to analogous problems. Since both RQM and DP have taken the Born rule to require relative facts I next say what these might be. My main objection to RQM as originally conceived is that its ontology of relative facts is incompatible with scientific objectivity and undercuts (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the Foundation of Space and Time by Quantum-Events.Andreas Schlatter - 2021 - Foundations of Physics 52 (1):1-17.
    The true nature of space and time has been a topic of natural philosophy, passed down since the presocratic era. In modern times reflection has particularly been inspired by the physical theories of Newton and Einstein and, more recently, by the quest for a theory of quantum gravity. In this paper we want to specify the idea that material systems and their spatio-temporal distances emerge from quantum-events. We will show a mechanism, by which quantum-events induce a metric field between material (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • An Argument Against the Realistic Interpretation of the Wave Function.Carlo Rovelli - 2016 - Foundations of Physics 46 (10):1229-1237.
    Testable predictions of quantum mechanics are invariant under time reversal. But the evolution of the quantum state in time is not so, neither in the collapse nor in the no-collapse interpretations of the theory. This is a fact that challenges any realistic interpretation of the quantum state. On the other hand, this fact raises no difficulty if we interpret the quantum state as a mere calculation device, bookkeeping past real quantum events.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  • Glimmers of a Pre-geometric Perspective.Federico Piazza - 2010 - Foundations of Physics 40 (3):239-266.
    Spacetime measurements and gravitational experiments are made by using objects, matter fields or particles and their mutual relationships. As a consequence, any operationally meaningful assertion about spacetime is in fact an assertion about the degrees of freedom of the matter (i.e. non gravitational) fields; those, say for definiteness, of the Standard Model of particle physics. As for any quantum theory, the dynamics of the matter fields can be described in terms of a unitary evolution of a state vector in a (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Assessing relational quantum mechanics.Ricardo Muciño, Elias Okon & Daniel Sudarsky - 2022 - Synthese 200 (5):1-26.
    Relational Quantum Mechanics is an interpretation of quantum theory based on the idea of abolishing the notion of absolute states of systems, in favor of states of systems relative to other systems. Such a move is claimed to solve the conceptual problems of standard quantum mechanics. Moreover, RQM has been argued to account for all quantum correlations without invoking non-local effects and, in spite of embracing a fully relational stance, to successfully explain how different observers exchange information. In this work, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • How Different Interpretations of Quantum Mechanics can Enrich Each Other: The Case of the Relational Quantum Mechanics and the Modal-Hamiltonian Interpretation.Olimpia Lombardi & Juan Sebastián Ardenghi - 2022 - Foundations of Physics 52 (3):1-21.
    In the literature on the interpretation of quantum mechanics, not many works attempt to adopt a proactive perspective aimed at seeing how different interpretations can enrich each other through a productive dialogue. In particular, few proposals have been devised to show that different approaches can be clarified by comparing them, and can even complement each other, improving or leading to a more fertile overall approach. The purpose of this paper is framed within this perspective of complementation and mutual enrichment. In (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • A structuralist interpretation of the relational interpretation.Giovanni Buonocore - 2022 - Theoria 88 (4):733-742.
    Theoria, Volume 88, Issue 4, Page 733-742, August 2022.
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relational quantum mechanics and the determinacy problem.Matthew J. Brown - 2009 - British Journal for the Philosophy of Science 60 (4):679-695.
    Carlo Rovelli's relational interpretation of quantum mechanics holds that a system's states or the values of its physical quantities as normally conceived only exist relative to a cut between a system and an observer or measuring instrument. Furthermore, on Rovelli's account, the appearance of determinate observations from pure quantum superpositions happens only relative to the interaction of the system and observer. Jeffrey Barrett ([1999]) has pointed out that certain relational interpretations suffer from what we might call the ‘determinacy problem', but (...)
    Direct download (15 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  • Relational Quantum Mechanics is About Facts, Not States: A Reply to Pienaar and Brukner.Andrea Di Biagio & Carlo Rovelli - 2022 - Foundations of Physics 52 (3):1-21.
    In recent works, Časlav Brukner and Jacques Pienaar have raised interesting objections to the relational interpretation of quantum mechanics. We answer these objections in detail and show that, far from questioning the viability of the interpretation, they sharpen and clarify it.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Relational quantum mechanics.Federico Laudisa - 2008 - Stanford Encyclopedia of Philosophy.
    Relational quantum mechanics is an interpretation of quantum theory which discards the notions of absolute state of a system, absolute value of its physical quantities, or absolute event. The theory describes only the way systems affect each other in the course of physical interactions. State and physical quantities refer always to the interaction, or the relation, between two systems. Nevertheless, the theory is assumed to be complete. The physical content of quantum theory is understood as expressing the net of relations (...)
    Direct download  
     
    Export citation  
     
    Bookmark   46 citations  
  • At what time does a quantum experiment have a result?Thomas Pashby - unknown
    This paper provides a general method for defining a generalized quantum observable that supplies properly normalized conditional probabilities for the time of occurrence. This method treats the time of occurrence as a probabilistic variable whose value is to be determined by experiment and predicted by the Born rule. This avoids the problematic assumption that a question about the time at which an event occurs must be answered through instantaneous measurements of a projector by an observer, common to both Rovelli and (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark