Switch to: References

Add citations

You must login to add citations.
  1. Chemistry is pluralistic.Klaus Ruthenberg & Ave Mets - 2020 - Foundations of Chemistry 22 (3):403-419.
    Recently, philosophers have come forth with approaches to chemistry based on its actual practice, imparting to it a proper aim and character of its own. These approaches add to the currently growing movement of pluralist philosophies of science. We draw on recent pluralist accounts from chemistry and analyse three notions from modern chemical practice and theory in terms of these accounts, in order to complement the so far more general pluralist approaches with specific evidence. Our survey reveals that the concept (...)
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • A scale of atomic electronegativity in terms of atomic nucleophilicity index.Hiteshi Tandon, Tanmoy Chakraborty & Vandana Suhag - 2020 - Foundations of Chemistry 22 (2):335-346.
    Electronegativity is an important physico-chemical concept to study the chemical structure and reactivity. Although, the conundrum related to measurement of electronegativity still persists. In view of this fact, a simple yet rigorous scale of electronegativity, invoking an inverse relationship with atomic nucleophilicity index, has been proposed for 103 elements of the periodic table. The computed data follows periodicity distinctly satisfying all the sine qua non of a standard scale of electronegativity. Further, electronegativity values display a sound similarity with the standard (...)
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Incompatible Models in Chemistry: The Case of Electronegativity.Hernán Accorinti - 2019 - Foundations of Chemistry 21 (1):71-81.
    During the second half of the nineteenth century, electronegativity has been one of the most relevant chemical concepts to explain the relationships between chemical substances and their possible reactions. Specifically, EN is a property of the substances that allows them to attract external electrons in bonding situations. The problem arises because EN cannot be measured directly. Indeed, the only way to measure it is through different properties that do can be directly measured, for instance enthalpy, ionization energies or electron affinities. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Problem of Optical Isomerism and the Interpretation of Quantum Mechanics.Juan Martínez González - 2019 - Foundations of Chemistry 21 (1):97-107.
    When young Kant meditated upon the distinction between his right and left hands, he could not foresee that the problem of incongruent counterparts would revive in the twentieth century under a new form. In the early days of quantum chemistry, Friedrich Hund developed the so-called Hund paradox that arises from the supposed inability of quantum mechanics to account for the difference between enantiomers. In this paper, the paradox is expressed as a case of quantum measurement, stressing that decoherence does not (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • On the Membership of Group 3 of the Periodic Table: A New Approach.Martín Gabriel Labarca & Juan Camilo Martínez González - 2019 - Theoria. An International Journal for Theory, History and Foundations of Science 34 (2):297.
    In April 2015, an international team of researchers announced the measurement, for the first time, of the first ionization energy of lawrencium, a superheavy element of atomic number 103. The experimental result, published in the prestigious scientific journal Nature, led to the reopening of a long-standing debate that concerns the elements that should be part of group 3 of the periodic table. The aim of this paper is to introduce a new line of argumentation to elucidate this problem.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation