Switch to: References

Citations of:

Many Worlds?: Everett, Quantum Theory, & Reality

Oxford, GB: Oxford University Press UK (2010)

Add citations

You must login to add citations.
  1. Analysis and Interpretation in the Exact Sciences: Essays in Honour of William Demopoulos.Melanie Frappier, Derek Brown & Robert DiSalle (eds.) - 2011 - Dordrecht and London: Springer.
    The essays in this volume concern the points of intersection between analytic philosophy and the philosophy of the exact sciences. More precisely, it concern connections between knowledge in mathematics and the exact sciences, on the one hand, and the conceptual foundations of knowledge in general. Its guiding idea is that, in contemporary philosophy of science, there are profound problems of theoretical interpretation-- problems that transcend both the methodological concerns of general philosophy of science, and the technical concerns of philosophers of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Metaphysical indeterminacy in the multiverse.Claudio Calosi & Jessica Wilson - 2022 - In Valia Allori (ed.), Quantum Mechanics and Fundamentality: Naturalizing Quantum Theory between Scientific Realism and Ontological Indeterminacy. Cham: Springer. pp. 375-395.
    One might suppose that Everettian quantum mechanics (EQM) is inhospitable to metaphysial indeterminacy (MI), given that, as A. Wilson (2020) puts it, "the central idea of EQM is to replace indeterminacy with multiplicity" (77). But as Wilson goes on to suggest, the popular decoherence-based understanding of EQM (henceforth: DEQM) appears to admit of indeterminacy in both world number and world nature, where the latter indeterminacy---our focus here---is plausibly metaphysical. After a brief presentation of DEQM (S1), we bolster the case for (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Everett Interpretation: Structure.Simon Saunders - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    The Everett interpretation of quantum mechanics divides naturally into two parts: first, the interpretation of the structure of the quantum state, in terms of branching, and second, the interpretation of this branching structure in terms of probability. This is the first of two reviews of the Everett interpretation, and focuses on structure, with particular attention to the role of decoherence theory. Written in terms of the quantum histories formalism, decoherence theory just is the theory of branching structure, in Everett's sense.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Everett Interpretation: Probability.Simon Saunders - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    The Everett interpretation of quantum mechanics divides naturally into two parts: first, the interpretation of the structure of the quantum state, in terms of branching, and second, the interpretation of this branching structure in terms of probability. This is the second of two reviews of the Everett interpretation, and focuses on probability. Branching processes are identified as chance processes, and the squares of branch amplitudes are chances. Since branching is emergent, physical probability is emergent as well.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Lessons of Bell's Theorem: Nonlocality, yes; Action at a distance, not necessarily.Wayne C. Myrvold - 2016 - In Mary Bell & Shan Gao (eds.), Quantum Nonlocality and Reality: 50 Years of Bell's Theorem. Cambridge University Press. pp. 238-260.
    Fifty years after the publication of Bell's theorem, there remains some controversy regarding what the theorem is telling us about quantum mechanics, and what the experimental violations of Bell inequalities are telling us about the world. This chapter represents my best attempt to be clear about what I think the lessons are. In brief: there is some sort of nonlocality inherent in any quantum theory, and, moreover, in any theory that reproduces, even approximately, the quantum probabilities for the outcomes of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • The meaning of the wave function: in search of the ontology of quantum mechanics.Shan Gao - 2017 - New York, NY, USA: Cambridge University Press.
    The meaning of the wave function has been a hot topic of debate since the early days of quantum mechanics. Recent years have witnessed a growing interest in this long-standing question. Is the wave function ontic, directly representing a state of reality, or epistemic, merely representing a state of knowledge, or something else? If the wave function is not ontic, then what, if any, is the underlying state of reality? If the wave function is indeed ontic, then exactly what physical (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  • The human story behind Everettian quantum mechanics: Peter Byrne: The many worlds of Hugh Everett III: Multiple universes, mutual assured destruction, and the meltdown of a nuclear family. Oxford: Oxford University Press, 456pp, £25.00 HB. [REVIEW]Alastair Wilson - 2011 - Metascience 21 (1):143-146.
    The human story behind Everettian quantum mechanics Content Type Journal Article Pages 1-4 DOI 10.1007/s11016-010-9510-4 Authors Alastair Wilson, University College, Oxford, OX1 4BH UK Journal Metascience Online ISSN 1467-9981 Print ISSN 0815-0796.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • Everettian quantum mechanics without branching time.Alastair Wilson - 2012 - Synthese 188 (1):67-84.
    In this paper I assess the prospects for combining contemporary Everettian quantum mechanics (EQM) with branching-time semantics in the tradition of Kripke, Prior, Thomason and Belnap. I begin by outlining the salient features of ‘decoherence-based’ EQM, and of the ‘consistent histories’ formalism that is particularly apt for conceptual discussions in EQM. This formalism permits of both ‘branching worlds’ and ‘parallel worlds’ interpretations; the metaphysics of EQM is in this sense underdetermined by the physics. A prominent argument due to Lewis (On (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • Everettian Confirmation and Sleeping Beauty.Alastair Wilson - 2014 - British Journal for the Philosophy of Science 65 (3):573-598.
    Darren Bradley has recently appealed to observation selection effects to argue that conditionalization presents no special problem for Everettian quantum mechanics, and to defend the ‘halfer’ answer to the puzzle of Sleeping Beauty. I assess Bradley’s arguments and conclude that while he is right about confirmation in Everettian quantum mechanics, he is wrong about Sleeping Beauty. This result is doubly good news for Everettians: they can endorse Bayesian confirmation theory without qualification, but they are not thereby compelled to adopt the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Taking particle physics seriously: A critique of the algebraic approach to quantum field theory.David Wallace - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (2):116-125.
    I argue against the currently prevalent view that algebraic quantum field theory (AQFT) is the correct framework for philosophy of quantum field theory and that “conventional” quantum field theory (CQFT), of the sort used in mainstream particle physics, is not suitable for foundational study. In doing so, I defend that position that AQFT and CQFT should be understood as rival programs to resolve the mathematical and physical pathologies of renormalization theory, and that CQFT has succeeded in this task and AQFT (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   68 citations  
  • An Ontology of Nature with Local Causality, Parallel Lives, and Many Relative Worlds.Mordecai Waegell - 2018 - Foundations of Physics 48 (12):1698-1730.
    Parallel lives is an ontological model of nature in which quantum mechanics and special relativity are unified in a single universe with a single space-time. Point-like objects called lives are the only fundamental objects in this space-time, and they propagate at or below c, and interact with one another only locally at point-like events in space-time, very much like classical point particles. Lives are not alive in any sense, nor do they possess consciousness or any agency to make decisions—they are (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Is quantum indeterminism real? Theological implications.Claudia E. Vanney - 2015 - Zygon 50 (3):736-756.
    Quantum mechanics studies physical phenomena on a microscopic scale. These phenomena are far beyond the reach of our observation, and the connection between QM's mathematical formalism and the experimental results is very indirect. Furthermore, quantum indeterminism defies common sense. Microphysical experiments have shown that, according to the empirical context, electrons and quanta of light behave as waves and other times as particles, even though it is impossible to design an experiment that manifests both behaviors at the same time. Unlike Newtonian (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Introduction: space–time and the wave function.Albert Solé & Carl Hoefer - 2015 - Synthese 192 (10):3055-3070.
  • Self-locating Uncertainty and the Origin of Probability in Everettian Quantum Mechanics.Charles T. Sebens & Sean M. Carroll - 2016 - British Journal for the Philosophy of Science (1):axw004.
    A longstanding issue in attempts to understand the Everett (Many-Worlds) approach to quantum mechanics is the origin of the Born rule: why is the probability given by the square of the amplitude? Following Vaidman, we note that observers are in a position of self-locating uncertainty during the period between the branches of the wave function splitting via decoherence and the observer registering the outcome of the measurement. In this period it is tempting to regard each branch as equiprobable, but we (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   48 citations  
  • Quantum Mechanics as Classical Physics.Charles T. Sebens - 2015 - Philosophy of Science 82 (2):266-291.
    Here I explore a novel no-collapse interpretation of quantum mechanics that combines aspects of two familiar and well-developed alternatives, Bohmian mechanics and the many-worlds interpretation. Despite reproducing the empirical predictions of quantum mechanics, the theory looks surprisingly classical. All there is at the fundamental level are particles interacting via Newtonian forces. There is no wave function. However, there are many worlds.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • Obliterating Thingness: An Introduction to the “What” and the “So What” of Quantum Physics.Kathryn Schaffer & Gabriela Barreto Lemos - 2019 - Foundations of Science 26 (1):7-26.
    This essay provides a short introduction to the ideas and potential implications of quantum physics for scholars in the arts, humanities, and social sciences. Quantum-inspired ideas pepper current discourse in all of these fields, in ways that range from playful metaphors to sweeping ontological claims. We explain several of the most important concepts at the core of quantum theory, carefully delineating the scope and bounds of currently established science, in order to aid the evaluation of such claims. In particular, we (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Decoherent Histories of Spin Networks.David P. B. Schroeren - 2013 - Foundations of Physics 43 (3):310-328.
    The decoherent histories formalism, developed by Griffiths, Gell-Mann, and Hartle (in Phys. Rev. A 76:022104, 2007; arXiv:1106.0767v3 [quant-ph], 2011; Consistent Quantum Theory, Cambridge University Press, 2003; arXiv:gr-qc/9304006v2, 1992) is a general framework in which to formulate a timeless, ‘generalised’ quantum theory and extract predictions from it. Recent advances in spin foam models allow for loop gravity to be cast in this framework. In this paper, I propose a decoherence functional for loop gravity and interpret existing results (Bianchi et al. in (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • Grounded Shadows, Groundless Ghosts.Ezra Rubenstein - 2022 - British Journal for the Philosophy of Science 73 (3):723-750.
    According to a radical account of quantum metaphysics that I label ‘high-dimensionalism’, ordinary objects are the ‘shadows’ of high-dimensional fundamental ontology. Critics—especially Maudlin —allege that high-dimensionalism cannot provide a satisfactory explanation of the manifest image. In this paper, I examine the two main ideas behind these criticisms: that high-dimensionalist connections between fundamental and non-fundamental are 1) inscrutable, and 2) arbitrary. In response to the first, I argue that there is no metaphysically significant contrast regarding the scrutability of low- and high-dimensionalist (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Stable Facts, Relative Facts.Carlo Rovelli & Andrea Di Biagio - 2021 - Foundations of Physics 51 (1):1-13.
    Facts happen at every interaction, but they are not absolute: they are relative to the systems involved in the interaction. Stable facts are those whose relativity can effectively be ignored. In this work, we describe how stable facts emerge in a world of relative facts and discuss their respective roles in connecting quantum theory and the world. The distinction between relative and stable facts resolves the difficulties pointed out by the no-go theorem of Frauchiger and Renner, and is consistent with (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  • Quantum Anthropology: Man, Cultures, and Groups in a Quantum Perspective.Radek Trnka & Radmila Lorencová - 2016 - Charles University Karolinum Press.
    This philosophical anthropology tries to explore the basic categories of man’s being in the worlds using a special quantum meta-ontology that is introduced in the book. Quantum understanding of space and time, consciousness, or empirical/nonempirical reality elicits new questions relating to philosophical concerns such as subjectivity, free will, mind, perception, experience, dialectic, or agency. The authors have developed an inspiring theoretical framework transcending the boundaries of particular disciplines, e.g. quantum philosophy, metaphysics of consciousness, philosophy of mind, phenomenology of space and (...)
  • Branching of possible worlds.Philip Percival - 2013 - Synthese 190 (18):4261-4291.
    The question as to whether some objects are possible worlds that have an initial segment in common, i.e. so that their fusion is a temporal tree whose branches are possible worlds, arises both for those who hold that our universe has the structure of a temporal tree and for those who hold that what there is includes concrete universes of every possible variety. The notion of “possible world” employed in the question is seen to be the notion of an object (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the Consistency of the Consistent Histories Approach to Quantum Mechanics.Elias Okon & Daniel Sudarsky - 2014 - Foundations of Physics 44 (1):19-33.
    The Consistent Histories (CH) formalism aims at a quantum mechanical framework which could be applied even to the universe as a whole. CH stresses the importance of histories for quantum mechanics, as opposed to measurements, and maintains that a satisfactory formulation of quantum mechanics allows one to assign probabilities to alternative histories of a quantum system. It further proposes that each realm, that is, each set of histories to which probabilities can be assigned, provides a valid quantum-mechanical account, but that (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • A consciousness-based quantum objective collapse model.Elias Okon & Miguel Ángel Sebastián - 2020 - Synthese 197 (9):3947-3967.
    Ever since the early days of quantum mechanics it has been suggested that consciousness could be linked to the collapse of the wave function. However, no detailed account of such an interplay is usually provided. In this paper we present an objective collapse model where the collapse operator depends on integrated information, which has been argued to measure consciousness. By doing so, we construct an empirically adequate scheme in which superpositions of conscious states are dynamically suppressed. Unlike other proposals in (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Neo-positivist metaphysics.Alyssa Ney - 2012 - Philosophical Studies 160 (1):53-78.
    Some philosophers argue that many contemporary debates in metaphysics are “illegitimate,” “shallow,” or “trivial,” and that “contemporary analytic metaphysics, a professional activity engaged in by some extremely intelligent and morally serious people, fails to qualify as part of the enlightened pursuit of objective truth, and should be discontinued” (Ladyman and Ross, Every thing must go: Metaphysics naturalized , 2007 ). Many of these critics are explicit about their sympathies with Rudolf Carnap and his circle, calling themselves ‘neo-positivists’ or ‘neo-Carnapians.’ Yet (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   40 citations  
  • Fundamental physical ontologies and the constraint of empirical coherence: a defense of wave function realism.Alyssa Ney - 2015 - Synthese 192 (10):3105-3124.
    This paper defends wave function realism against the charge that the view is empirically incoherent because our evidence for quantum theory involves facts about objects in three-dimensional space or space-time . It also criticizes previous attempts to defend wave function realism against this charge by claiming that the wave function is capable of grounding local beables as elements of a derivative ontology.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   38 citations  
  • A Flea on Schrödinger's Cat.P. N. & Robin Reuvers - 2013 - Foundations of Physics 43 (3):373-407.
    We propose a technical reformulation of the measurement problem of quantum mechanics, which is based on the postulate that the final state of a measurement is classical; this accords with experimental practice as well as with Bohr’s views. Unlike the usual formulation (in which the post-measurement state is a unit vector in Hilbert space), our version actually opens the possibility of admitting a purely technical solution within the confines of conventional quantum theory (as opposed to solutions that either modify this (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Quantum Mechanics in a New Light.Ulrich J. Mohrhoff - 2017 - Foundations of Science 22 (3):517-537.
    Although the present paper looks upon the formal apparatus of quantum mechanics as a calculus of correlations, it goes beyond a purely operationalist interpretation. Having established the consistency of the correlations with the existence of their correlata, and having justified the distinction between a domain in which outcome-indicating events occur and a domain whose properties only exist if their existence is indicated by such events, it explains the difference between the two domains as essentially the difference between the manifested world (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Branching in the landscape of possibilities.Thomas Müller - 2012 - Synthese 188 (1):41-65.
    The metaphor of a branching tree of future possibilities has a number of important philosophical and logical uses. In this paper we trace this metaphor through some of its uses and argue that the metaphor works the same way in physics as in philosophy. We then give an overview of formal systems for branching possibilities, viz., branching time and (briefly) branching space-times. In a next step we describe a number of different notions of possibility, thereby sketching a landscape of possibilities. (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • Four Tails Problems for Dynamical Collapse Theories.Kelvin J. McQueen - 2015 - Studies in the History and Philosophy of Modern Physics 49:10-18.
    The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many authors dismiss (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  • Why I am not a QBist.Louis Marchildon - 2015 - Foundations of Physics 45 (7):754-761.
    Quantum Bayesianism, or QBism, is a recent development of the epistemic view of quantum states, according to which the state vector represents knowledge about a quantum system, rather than the true state of the system. QBism explicitly adopts the subjective view of probability, wherein probability assignments express an agent’s personal degrees of belief about an event. QBists claim that most if not all conceptual problems of quantum mechanics vanish if we simply take a proper epistemic and probabilistic perspective. Although this (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Multiplicity in Everett׳s interpretation of quantum mechanics.Louis Marchildon - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):274-284.
  • The Doomsday Argument and the Simulation Argument.Peter J. Lewis - 2013 - Synthese 190 (18):4009-4022.
    The Doomsday Argument and the Simulation Argument share certain structural features, and hence are often discussed together. Both are cases where reflecting on one’s location among a set of possibilities yields a counter-intuitive conclusion—in the first case that the end of humankind is closer than you initially thought, and in the second case that it is more likely than you initially thought that you are living in a computer simulation. Indeed, the two arguments do have some structural similarities. But there (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Literal versus Careful Interpretations of Scientific Theories: The Vacuum Approach to the Problem of Motion in General Relativity.Dennis Lehmkuhl - 2017 - Philosophy of Science 84 (5):1202-1214.
    The problem of motion in general relativity is about how exactly the gravitational field equations, the Einstein equations, are related to the equations of motion of material bodies subject to gravitational fields. This article compares two approaches to derive the geodesic motion of matter from the field equations: the ‘T approach’ and the ‘vacuum approach’. The latter approach has been dismissed by philosophers of physics because it apparently represents material bodies by singularities. I argue that a careful interpretation of the (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Real World Interpretations of Quantum Theory.Adrian Kent - 2012 - Foundations of Physics 42 (3):421-435.
    I propose a new class of interpretations, real world interpretations, of the quantum theory of closed systems. These interpretations postulate a preferred factorization of Hilbert space and preferred projective measurements on one factor. They give a mathematical characterisation of the different possible worlds arising in an evolving closed quantum system, in which each possible world corresponds to a (generally mixed) evolving quantum state. In a realistic model, the states corresponding to different worlds should be expected to tend towards orthogonality as (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Quanta and Qualia.Adrian Kent - 2018 - Foundations of Physics 48 (9):1021-1037.
    I sketch a line of thought about consciousness and physics that gives some motivation for the hypothesis that conscious observers deviate—perhaps only very subtly and slightly—from quantum dynamics. Although it is hard to know just how much credence to give this line of thought, it does add motivation for a stronger and more comprehensive programme of quantum experiments involving quantum observers.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Might Quantum-Induced Deviations from the Einstein Equations Detectably Affect Gravitational Wave Propagation?Adrian Kent - 2013 - Foundations of Physics 43 (6):707-718.
    A quantum measurement-like event can produce any of a number of macroscopically distinct results, with corresponding macroscopically distinct gravitational fields, from the same initial state. Hence the probabilistically evolving large-scale structure of space-time is not precisely or even always approximately described by the deterministic Einstein equations.Since the standard treatment of gravitational wave propagation assumes the validity of the Einstein equations, it is questionable whether we should expect all its predictions to be empirically verified. In particular, one might expect the stochasticity (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • Does it Make Sense to Speak of Self-Locating Uncertainty in the Universal Wave Function? Remarks on Sebens and Carroll.Adrian Kent - 2015 - Foundations of Physics 45 (2):211-217.
    Following a proposal of Vaidman The Stanford encyclopaedia of philosophy, 2014) The probable and the improbable: understanding probability in physics, essays in memory of Itamar Pitowsky, 2011), Sebens and Carroll , have argued that in Everettian quantum theory, observers are uncertain, before they complete their observation, about which Everettian branch they are on. They argue further that this solves the problem of making sense of probabilities within Everettian quantum theory, even though the theory itself is deterministic. We note some problems (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Collapse and Measures of Consciousness.Adrian Kent - 2021 - Foundations of Physics 51 (3):1-14.
    There has been an upsurge of interest lately in developing Wigner’s hypothesis that conscious observation causes collapse by exploring dynamical collapse models in which some purportedly quantifiable aspect of consciousness resist superposition. Kremnizer–Ranchin, Chalmers–McQueen and Okon–Sebastián have explored the idea that collapse may be associated with a numerical measure of consciousness. More recently, Chalmers–McQueen have argued that any single measure is inadequate because it will allow superpositions of distinct states of equal consciousness measure to persist. They suggest a satisfactory model (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Wavefunction reality, indeterminate properties and degrees of presence.Fedor Herbut - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (3):182-190.
    The degree-of-presence concept, accompanying that of the wavefunction-reality postulate, is introduced and studied in two ways. To begin with, an incomplete exposition of the present author's views is given. Subsequently, a short historical and philosophical review of answers to the question about the meaning of indeterminate individual-system probabilities is presented from the literature. It is done in the form of a carefully selected collage of quotations mostly with polemic comments by the present author and with further elaboration of his point (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • How Quantum Theory Helps Us Explain.Richard Healey - 2012 - British Journal for the Philosophy of Science (1):axt031.
    I offer an account of how the quantum theory we have helps us explain so much. The account depends on a pragmatist interpretation of the theory: this takes a quantum state to serve as a source of sound advice to physically situated agents on the content and appropriate degree of belief about matters concerning which they are currently inevitably ignorant. The general account of how to use quantum states and probabilities to explain otherwise puzzling regularities is then illustrated by showing (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • How Quantum Theory Helps Us Explain.Richard A. Healey - 2015 - British Journal for the Philosophy of Science 66 (1):1-43.
    I offer an account of how the quantum theory we have helps us explain the enormous variety of phenomena it is generally taken to explain. The account depends on what I have elsewhere called a pragmatist interpretation of the theory. This rejects views according to which a quantum state describes or represents a physical system, holding instead that it functions as a source of sound advice to physically situated agents like us on the content and appropriate degree of belief about (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • Timeless Configuration Space and the Emergence of Classical Behavior.Henrique Gomes - 2018 - Foundations of Physics 48 (6):668-715.
    The inherent difficulty in talking about quantum decoherence in the context of quantum cosmology is that decoherence requires subsystems, and cosmology is the study of the whole Universe. Consistent histories gave a possible answer to this conundrum, by phrasing decoherence as loss of interference between alternative histories of closed systems. When one can apply Boolean logic to a set of histories, it is deemed ‘consistent’. However, the vast majority of the sets of histories that are merely consistent are blatantly nonclassical (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Indeterminism in physics and intuitionistic mathematics.Nicolas Gisin - 2021 - Synthese 199 (5-6):13345-13371.
    Most physics theories are deterministic, with the notable exception of quantum mechanics which, however, comes plagued by the so-called measurement problem. This state of affairs might well be due to the inability of standard mathematics to “speak” of indeterminism, its inability to present us a worldview in which new information is created as time passes. In such a case, scientific determinism would only be an illusion due to the timeless mathematical language scientists use. To investigate this possibility it is necessary (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the Ollivier–Poulin–Zurek Definition of Objectivity.Chris Fields - 2014 - Axiomathes 24 (1):137-156.
    The Ollivier–Poulin–Zurek definition of objectivity provides a philosophical basis for the environment as witness formulation of decoherence theory and hence for quantum Darwinism. It is shown that no account of the reference of the key terms in this definition can be given that does not render the definition inapplicable within quantum theory. It is argued that this is not the fault of the language used, but of the assumption that the laws of physics are independent of Hilbert-space decomposition. All evidence (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Physics-Based Metaphysics is a Metaphysics-Based Metaphysics.Chris Fields - 2014 - Acta Analytica 29 (2):131-148.
    The common practice of advancing arguments based on current physics in support of metaphysical conclusions has been criticized on the grounds that current physics may well be wrong. A further criticism is leveled here: current physics itself depends on metaphysical assumptions, so arguing from current physics is in fact arguing from yet more metaphysics. It is shown that the metaphysical assumptions underlying current physics are often deeply embedded in the formalism in which theories are presented, and hence impossible to dismiss (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ontic structural realism and the interpretation of quantum mechanics.Michael Esfeld - 2013 - European Journal for Philosophy of Science 3 (1):19-32.
    This paper argues that ontic structural realism (OSR) faces a dilemma: either it remains on the general level of realism with respect to the structure of a given theory, but then it is, like epistemic structural realism, only a partial realism; or it is a complete realism, but then it has to answer the question how the structure of a given theory is implemented, instantiated or realized and thus has to argue for a particular interpretation of the theory in question. (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  • The Physics and Metaphysics of Primitive Stuff.Michael Esfeld, Dustin Lazarovici, Vincent Lam & Mario Hubert - 2017 - British Journal for the Philosophy of Science 68 (1):133-61.
    The article sets out a primitive ontology of the natural world in terms of primitive stuff—that is, stuff that has as such no physical properties at all—but that is not a bare substratum either, being individuated by metrical relations. We focus on quantum physics and employ identity-based Bohmian mechanics to illustrate this view, but point out that it applies all over physics. Properties then enter into the picture exclusively through the role that they play for the dynamics of the primitive (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   41 citations  
  • Would the Existence of CTCs Allow for Nonlocal Signaling?Lucas Dunlap - 2019 - Erkenntnis 84 (1):215-234.
    A recent paper from Brun et al. has argued that access to a closed timelike curve would allow for the possibility of perfectly distinguishing nonorthogonal quantum states. This result can be used to develop a protocol for instantaneous nonlocal signaling. Several commenters have argued that nonlocal signaling must fail in this and in similar cases, often citing consistency with relativity as the justification. I argue that this objection fails to rule out nonlocal signaling in the presence of a CTC. I (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  • Events and the Ontology of Quantum Mechanics.Mauro Dorato - 2015 - Topoi 34 (2):369-378.
    In the first part of the paper I argue that an ontology of events is precise, flexible and general enough so as to cover the three main alternative formulations of quantum mechanics as well as theories advocating an antirealistic view of the wave function. Since these formulations advocate a primitive ontology of entities living in four-dimensional spacetime, they are good candidates to connect that quantum image with the manifest image of the world. However, to the extent that some form of (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  • Exploring Philosophical Implications of Quantum Decoherence.Elise M. Crull - 2013 - Philosophy Compass 8 (9):875-885.
    Quantum decoherence is receiving a great deal of attention today not only in theoretical and experimental physics but also in branches of science as diverse as molecular biology, biochemistry, and even neuropsychology. It is no surprise that it is also beginning to appear in various philosophical debates concerning the fundamental structure of the world. The purpose of this article is primarily to acquaint non-specialists with quantum decoherence and clarify related concepts, and secondly to sketch its possible implications – independent of (...)
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations