Switch to: References

Add citations

You must login to add citations.
  1. Toward a Topic-Specific Logicism? Russell's Theory of Geometry in the Principles of Mathematics.Sébastien Gandon - 2009 - Philosophia Mathematica 17 (1):35-72.
    Russell's philosophy is rightly described as a programme of reduction of mathematics to logic. Now the theory of geometry developed in 1903 does not fit this picture well, since it is deeply rooted in the purely synthetic projective approach, which conflicts with all the endeavours to reduce geometry to analytical geometry. The first goal of this paper is to present an overview of this conception. The second aim is more far-reaching. The fact that such a theory of geometry was sustained (...)
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • A New–Old Characterisation of Logical Knowledge.Ivor Grattan-Guinness - 2012 - History and Philosophy of Logic 33 (3):245 - 290.
    We seek means of distinguishing logical knowledge from other kinds of knowledge, especially mathematics. The attempt is restricted to classical two-valued logic and assumes that the basic notion in logic is the proposition. First, we explain the distinction between the parts and the moments of a whole, and theories of ?sortal terms?, two theories that will feature prominently. Second, we propose that logic comprises four ?momental sectors?: the propositional and the functional calculi, the calculus of asserted propositions, and rules for (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • A Social History of the “Galois Affair” at the Paris Academy of Sciences.Caroline Ehrhardt - 2010 - Science in Context 23 (1):91-119.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Omnipresence, Multipresence and Ubiquity: Kinds of Generality in and Around Mathematics and Logics. [REVIEW]I. Grattan-Guinness - 2011 - Logica Universalis 5 (1):21-73.
    A prized property of theories of all kinds is that of generality, of applicability or least relevance to a wide range of circumstances and situations. The purpose of this article is to present a pair of distinctions that suggest that three kinds of generality are to be found in mathematics and logics, not only at some particular period but especially in developments that take place over time: ‘omnipresent’ and ‘multipresent’ theories, and ‘ubiquitous’ notions that form dependent parts, or moments, of (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations