Citations of:
Add citations
You must login to add citations.
|
|
|
|
For a primitive recursive consistent and strong enough theory T we construct an independent statement which has some clear metamathematical meaning. |
|
We introduce a tool for analysing models of $\text {CT}^-$, the compositional truth theory over Peano Arithmetic. We present a new proof of Lachlan’s theorem that the arithmetical part of models of $\text {CT}^-$ are recursively saturated. We also use this tool to provide a new proof of theorem from [8] that all models of $\text {CT}^-$ carry a partial inductive truth predicate. Finally, we construct a partial truth predicate defined for a set of formulae whose syntactic depth forms a (...) |
|
We introduce a principle of local collection for compositional truth predicates and show that it is arithmetically conservative over the classically compositional theory of truth. This axiom states that upon restriction to formulae of any syntactic complexity, the resulting predicate satisfies full collection. In particular, arguments using collection for the truth predicate applied to sentences occurring in any given (code of a) proof do not suffice to show that the conclusion of that proof is true, in stark contrast to the (...) |
|
In the following paper we propose a model-theoretical way of comparing the “strength” of various truth theories which are conservative over PA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ PA $$\end{document}. Let Th\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {Th}}$$\end{document} denote the class of models of PA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ PA $$\end{document} which admit an expansion to a model of theory Th\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} (...) No categories |
|
A model \ of ZF is said to be condensable if \\prec _{\mathbb {L}_{{\mathcal {M}}}} {\mathcal {M}}\) for some “ordinal” \, where \:=,\in )^{{\mathcal {M}}}\) and \ is the set of formulae of the infinitary logic \ that appear in the well-founded part of \. The work of Barwise and Schlipf in the 1970s revealed the fact that every countable recursively saturated model of ZF is cofinally condensable \prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}\) for an unbounded collection of \). Moreover, it (...) No categories |
|
We show that a typed compositional theory of positive truth with internal induction for total formulae (denoted by PT tot ) is not semantically conservative over Peano arithmetic. In addition, we observe that the class of models of PA expandable to models of PT tot contains every recursively saturated model of arithmetic. Our results point to a gap in the philosophical project of describing the use of the truth predicate in model-theoretic contexts. |
|
No categories |
|
In this paper we explain our pretense account of truth-talk and apply it in a diagnosis and treatment of the Liar Paradox. We begin by assuming that some form of deflationism is the correct approach to the topic of truth. We then briefly motivate the idea that all T-deflationists should endorse a fictionalist view of truth-talk, and, after distinguishing pretense-involving fictionalism (PIF) from error- theoretic fictionalism (ETF), explain the merits of the former over the latter. After presenting the basic framework (...) |