Switch to: References

Add citations

You must login to add citations.
  1. On the Physical Explanation for Quantum Computational Speedup.Michael E. Cuffaro - 2013 - Dissertation, The University of Western Ontario
    The aim of this dissertation is to clarify the debate over the explanation of quantum speedup and to submit, for the reader's consideration, a tentative resolution to it. In particular, I argue, in this dissertation, that the physical explanation for quantum speedup is precisely the fact that the phenomenon of quantum entanglement enables a quantum computer to fully exploit the representational capacity of Hilbert space. This is impossible for classical systems, joint states of which must always be representable as product (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Necessity of Entanglement for the Explanation of Quantum Speedup.Michael Cuffaro - manuscript
    Of the many and varied applications of quantum information theory, perhaps the most fascinating is the sub-field of quantum computation. In this sub-field, computational algorithms are designed which utilise the resources available in quantum systems in order to compute solutions to computational problems with, in some cases, exponentially fewer resources than any known classical algorithm. While the fact of quantum computational speedup is almost beyond doubt, the source of quantum speedup is still a matter of debate. In this paper I (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • Relativity, Quantum Entanglement, Counterfactuals, and Causation.Luke Fenton-Glynn & Thomas Kroedel - 2015 - British Journal for the Philosophy of Science 66 (1):45-67.
    We investigate whether standard counterfactual analyses of causation imply that the outcomes of space-like separated measurements on entangled particles are causally related. Although it has sometimes been claimed that standard CACs imply such a causal relation, we argue that a careful examination of David Lewis’s influential counterfactual semantics casts doubt on this. We discuss ways in which Lewis’s semantics and standard CACs might be extended to the case of space-like correlations.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Comments on Shimony’s “An Analysis of Stapp’s ‘A Bell-Type Theorem Without Hidden Variables’ ”.Henry P. Stapp - 2006 - Foundations of Physics 36 (1):73-82.
    The hidden-variable theorems of Bell and followers depend upon an assumption, namely the hidden-variable assumption, that conflicts with the precepts of quantum philosophy. Hence from an orthodox quantum perspective those theorems entail no faster-than-light transfer of information. They merely reinforce the ban on hidden variables. The need for some sort of faster-than-light information transfer can be shown by using counterfactuals instead of hidden variables. Shimony’s criticism of that argument fails to take into account the distinction between no-faster-than-light connection in one (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark  
  • Refocusing Bohr's Quantum Postulate.Allen C. Dotson - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (3):610-619.
  • How to Evaluate Counterfactuals in the Quantum World.Tomasz Bigaj - 2013 - Synthese 190 (4):619-637.
    In the article I discuss possible amendments and corrections to Lewis’s semantics for counterfactuals that are necessary in order to account for the indeterministic and non-local character of the quantum world. I argue that Lewis’s criteria of similarity between possible worlds produce incorrect valuations for alternate-outcome counterfactuals in the EPR case. Later I discuss an alternative semantics which rejects the notion of miraculous events and relies entirely on the comparison of the agreement with respect to individual facts. However, a controversy (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  • An Analysis of Stapp’s “A Bell-Type Theorem Without Hidden Variables”.Abner Shimony - 2006 - Foundations of Physics 36 (1):61-72.
    H.P. Stapp has proposed a number of demonstrations of a Bell-type theorem which dispensed with an assumption of hidden variables, but relied only upon locality together with an assumption that experimenters can choose freely which of several incompatible observables to measure. In recent papers his strategy has centered upon counterfactual conditionals. Stapp’s paper in American Journal of Physics, 2004, replies to objections raised against earlier expositions of this strategy and proposes a simplified demonstration. The new demonstration is criticized, several subtleties (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Counterfactuals and Non-Locality of Quantum Mechanics: The Bedford–Stapp Version of the GHZ Theorem.Tomasz Bigaj - 2007 - Foundations of Science 12 (1):85-108.
    In the paper, the proof of the non-locality of quantum mechanics, given by Bedford and Stapp (1995), and appealing to the GHZ example, is analyzed. The proof does not contain any explicit assumption of realism, but instead it uses formal methods and techniques of the Lewis calculus of counterfactuals. To ascertain the validity of the proof, a formal semantic model for counterfactuals is constructed. With the help of this model it can be shown that the proof is faulty, because it (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Refocusing Bohr's Quantum Postulate.Allen C. Dotson - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (3):610-619.
  • How to (Properly) Strengthen Bell's Theorem Using Counterfactuals.Tomasz Bigaj - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41 (1):58-66.
    Bell’s theorem in its standard version demonstrates that the joint assumptions of the hidden-variable hypothesis and the principle of local causation lead to a conflict with quantum-mechanical predictions. In his latest counterfactual strengthening of Bell’s theorem, Stapp attempts to prove that the locality assumption itself contradicts the quantum-mechanical predictions in the Hardy case. His method relies on constructing a complex, non-truth functional formula which consists of statements about measurements and outcomes in some region R, and whose truth value depends on (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ungrounded Dispositions in Quantum Mechanics.Tomasz Bigaj - 2012 - Foundations of Science 17 (3):205-221.
    General metaphysical arguments have been proposed in favour of the thesis that all dispositions have categorical bases (Armstrong; Prior, Pargetter, Jackson). These arguments have been countered by equally general arguments in support of ungrounded dispositions (Molnar, Mumford). I believe that this controversy cannot be settled purely on the level of abstract metaphysical considerations. Instead, I propose to look for ungrounded dispositions in specific physical theories, such as quantum mechanics. I explain why non-classical properties such as spin are best interpreted as (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations