Switch to: References

Citations of:

Basic Proof Theory

Bulletin of Symbolic Logic 7 (2):280-280 (2001)

Add citations

You must login to add citations.
  1. Neo-Logicism and Its Logic.Panu Raatikainen - 2019 - History and Philosophy of Logic 41 (1):82-95.
    The rather unrestrained use of second-order logic in the neo-logicist program is critically examined. It is argued in some detail that it brings with it genuine set-theoretical existence assumptions and that the mathematical power that Hume’s Principle seems to provide, in the derivation of Frege’s Theorem, comes largely from the ‘logic’ assumed rather than from Hume’s Principle. It is shown that Hume’s Principle is in reality not stronger than the very weak Robinson Arithmetic Q. Consequently, only a few rudimentary facts (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Some Weak Fragments of {${\Rm HA}$} and Certain Closure Properties.Morteza Moniri & Mojtaba Moniri - 2002 - Journal of Symbolic Logic 67 (1):91-103.
    We show that Intuitionistic Open Induction iop is not closed under the rule DNS(∃ - 1 ). This is established by constructing a Kripke model of iop + $\neg L_y(2y > x)$ , where $L_y(2y > x)$ is universally quantified on x. On the other hand, we prove that iop is equivalent with the intuitionistic theory axiomatized by PA - plus the scheme of weak ¬¬LNP for open formulas, where universal quantification on the parameters precedes double negation. We also show (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Socratic Trees.Dorota Leszczyńska-Jasion, Mariusz Urbański & Andrzej Wiśniewski - 2013 - Studia Logica 101 (5):959-986.
    The method of Socratic proofs (SP-method) simulates the solving of logical problem by pure questioning. An outcome of an application of the SP-method is a sequence of questions, called a Socratic transformation. Our aim is to give a method of translation of Socratic transformations into trees. We address this issue both conceptually and by providing certain algorithms. We show that the trees which correspond to successful Socratic transformations—that is, to Socratic proofs—may be regarded, after a slight modification, as Gentzen-style proofs. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Contraction, Infinitary Quantifiers, and Omega Paradoxes.Bruno Da Ré & Lucas Rosenblatt - 2018 - Journal of Philosophical Logic 47 (4):611-629.
    Our main goal is to investigate whether the infinitary rules for the quantifiers endorsed by Elia Zardini in a recent paper are plausible. First, we will argue that they are problematic in several ways, especially due to their infinitary features. Secondly, we will show that even if these worries are somehow dealt with, there is another serious issue with them. They produce a truth-theoretic paradox that does not involve the structural rules of contraction.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Reasoning About Collectively Accepted Group Beliefs.Raul Hakli & Sara Negri - 2011 - Journal of Philosophical Logic 40 (4):531-555.
    A proof-theoretical treatment of collectively accepted group beliefs is presented through a multi-agent sequent system for an axiomatization of the logic of acceptance. The system is based on a labelled sequent calculus for propositional multi-agent epistemic logic with labels that correspond to possible worlds and a notation for internalized accessibility relations between worlds. The system is contraction- and cut-free. Extensions of the basic system are considered, in particular with rules that allow the possibility of operative members or legislators. Completeness with (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Reinhard Kahle and Michael Rathjen : Gentzen’s Centenary. The Quest for Consistency.David Binder - 2018 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 49 (3):475-479.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Constructibility of the Universal Wave Function.Arkady Bolotin - 2016 - Foundations of Physics 46 (10):1253-1268.
    This paper focuses on a constructive treatment of the mathematical formalism of quantum theory and a possible role of constructivist philosophy in resolving the foundational problems of quantum mechanics, particularly, the controversy over the meaning of the wave function of the universe. As it is demonstrated in the paper, unless the number of the universe’s degrees of freedom is fundamentally upper bounded or hypercomputation is physically realizable, the universal wave function is a non-constructive entity in the sense of constructive recursive (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • How to Assign Ordinal Numbers to Combinatory Terms with Polymorphic Types.William R. Stirton - 2012 - Archive for Mathematical Logic 51 (5-6):475-501.
    The article investigates a system of polymorphically typed combinatory logic which is equivalent to Gödel’s T. A notion of (strong) reduction is defined over terms of this system and it is proved that the class of well-formed terms is closed under both bracket abstraction and reduction. The main new result is that the number of contractions needed to reduce a term to normal form is computed by an ε 0-recursive function. The ordinal assignments used to obtain this result are also (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Decidable Theory of Type Assignment.William R. Stirton - 2013 - Archive for Mathematical Logic 52 (5-6):631-658.
    This article investigates a theory of type assignment (assigning types to lambda terms) called ETA which is intermediate in strength between the simple theory of type assignment and strong polymorphic theories like Girard’s F (Proofs and types. Cambridge University Press, Cambridge, 1989). It is like the simple theory and unlike F in that the typability and type-checking problems are solvable with respect to ETA. This is proved in the article along with three other main results: (1) all primitive recursive functionals (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Glivenko Sequent Classes in the Light of Structural Proof Theory.Sara Negri - 2016 - Archive for Mathematical Logic 55 (3-4):461-473.
    In 1968, Orevkov presented proofs of conservativity of classical over intuitionistic and minimal predicate logic with equality for seven classes of sequents, what are known as Glivenko classes. The proofs of these results, important in the literature on the constructive content of classical theories, have remained somehow cryptic. In this paper, direct proofs for more general extensions are given for each class by exploiting the structural properties of G3 sequent calculi; for five of the seven classes the results are strengthened (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • A Herbrandized Functional Interpretation of Classical First-Order Logic.Fernando Ferreira & Gilda Ferreira - 2017 - Archive for Mathematical Logic 56 (5-6):523-539.
    We introduce a new typed combinatory calculus with a type constructor that, to each type σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, associates the star type σ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^*$$\end{document} of the nonempty finite subsets of elements of type σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}. We prove that this calculus enjoys the properties of strong normalization and confluence. With the aid of this star combinatory (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Grounding Principles for Implication.Francesca Poggiolesi - forthcoming - Synthese:1-26.
    Most of the logics of grounding that have so far been proposed contain grounding axioms, or grounding rules, for the connectives of conjunction, disjunction and negation, but little attention has been dedicated to the implication connective. The present paper aims at repairing this situation by proposing adequate grounding principles for relevant implication. Because of the interaction between negation and implication, new grounding principles concerning negation will also arise.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Conditional Heresies.Fabrizio Cariani & Simon Goldstein - 2018 - Philosophy and Phenomenological Research.
  • Situations as Indices and as Denotations.Tim Fernando - 2009 - Linguistics and Philosophy 32 (2):185-206.
    A distinction is drawn between situations as indices required for semantically evaluating sentences and situations as denotations resulting from such evaluation. For atomic sentences, possible worlds may serve as indices, and events as denotations. The distinction is extended beyond atomic sentences according to formulae-as-types and applied to implicit quantifier domain restrictions, intensionality and conditionals.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Deciding Regular Grammar Logics with Converse Through First-Order Logic.Stéphane Demri & Hans De Nivelle - 2005 - Journal of Logic, Language and Information 14 (3):289-329.
    We provide a simple translation of the satisfiability problem for regular grammar logics with converse into GF2, which is the intersection of the guarded fragment and the 2-variable fragment of first-order logic. The translation is theoretically interesting because it translates modal logics with certain frame conditions into first-order logic, without explicitly expressing the frame conditions. It is practically relevant because it makes it possible to use a decision procedure for the guarded fragment in order to decide regular grammar logics with (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Sequent Calculus for a Negative Free Logic.Norbert Gratzl - 2010 - Studia Logica 96 (3):331-348.
    This article presents a sequent calculus for a negative free logic with identity, called N . The main theorem (in part 1) is the admissibility of the Cut-rule. The second part of this essay is devoted to proofs of soundness, compactness and completeness of N relative to a standard semantics for negative free logic.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Validity Concepts in Proof-Theoretic Semantics.Peter Schroeder-Heister - 2006 - Synthese 148 (3):525-571.
    The standard approach to what I call “proof-theoretic semantics”, which is mainly due to Dummett and Prawitz, attempts to give a semantics of proofs by defining what counts as a valid proof. After a discussion of the general aims of proof-theoretic semantics, this paper investigates in detail various notions of proof-theoretic validity and offers certain improvements of the definitions given by Prawitz. Particular emphasis is placed on the relationship between semantic validity concepts and validity concepts used in normalization theory. It (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  • A Note on the Relation Between Formal and Informal Proof.Jörgen Sjögren - 2010 - Acta Analytica 25 (4):447-458.
    Using Carnap’s concept explication, we propose a theory of concept formation in mathematics. This theory is then applied to the problem of how to understand the relation between the concepts formal proof and informal, mathematical proof.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Does the Deduction Theorem Fail for Modal Logic?Raul Hakli & Sara Negri - 2012 - Synthese 187 (3):849-867.
    Various sources in the literature claim that the deduction theorem does not hold for normal modal or epistemic logic, whereas others present versions of the deduction theorem for several normal modal systems. It is shown here that the apparent problem arises from an objectionable notion of derivability from assumptions in an axiomatic system. When a traditional Hilbert-type system of axiomatic logic is generalized into a system for derivations from assumptions, the necessitation rule has to be modified in a way that (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • Propositional Quantifiers in Labelled Natural Deduction for Normal Modal Logic.Matteo Pascucci - 2019 - Logic Journal of the IGPL 27 (6):865-894.
    This article concerns the treatment of propositional quantification in a framework of labelled natural deduction for modal logic developed by Basin, Matthews and Viganò. We provide a detailed analysis of a basic calculus that can be used for a proof-theoretic rendering of minimal normal multimodal systems with quantification over stable domains of propositions. Furthermore, we consider variations of the basic calculus obtained via relational theories and domain theories allowing for quantification over possibly unstable domains of propositions. The main result of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Explicit Provability and Constructive Semantics.Sergei N. Artemov - 2001 - Bulletin of Symbolic Logic 7 (1):1-36.
    In 1933 Godel introduced a calculus of provability (also known as modal logic S4) and left open the question of its exact intended semantics. In this paper we give a solution to this problem. We find the logic LP of propositions and proofs and show that Godel's provability calculus is nothing but the forgetful projection of LP. This also achieves Godel's objective of defining intuitionistic propositional logic Int via classical proofs and provides a Brouwer-Heyting-Kolmogorov style provability semantics for Int which (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   78 citations  
  • The Many Faces of Interpolation.Johan van Benthem - 2008 - Synthese 164 (3):451-460.
    We present a number of, somewhat unusual, ways of describing what Craig’s interpolation theorem achieves, and use them to identify some open problems and further directions.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Hybrid Logic with the Difference Modality for Generalisations of Graphs.Robert S. R. Myers & Dirk Pattinson - 2010 - Journal of Applied Logic 8 (4):441-458.
  • Truth in a Logic of Formal Inconsistency: How Classical Can It Get?Lavinia Picollo - forthcoming - Logic Journal of the IGPL.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • A Dialogical Route to Logical Pluralism.Rohan French - forthcoming - Synthese:1-21.
    This paper argues that adopting a particular dialogical account of logical consequence quite directly gives rise to an interesting form of logical pluralism, the form of pluralism in question arising out of the requirement that deductive proofs be explanatory.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Absorbing the Structural Rules in the Sequent Calculus with Additional Atomic Rules.Franco Parlamento & Flavio Previale - forthcoming - Archive for Mathematical Logic:1-20.
    We show that if the structural rules are admissible over a set \ of atomic rules, then they are admissible in the sequent calculus obtained by adding the rules in \ to the multisuccedent minimal and intuitionistic \ calculi as well as to the classical one. Two applications to pure logic and to the sequent calculus with equality are presented.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Geometrisation of First-Order Logic.Roy Dyckhoff & Sara Negri - 2015 - Bulletin of Symbolic Logic 21 (2):123-163.
    That every first-order theory has a coherent conservative extension is regarded by some as obvious, even trivial, and by others as not at all obvious, but instead remarkable and valuable; the result is in any case neither sufficiently well-known nor easily found in the literature. Various approaches to the result are presented and discussed in detail, including one inspired by a problem in the proof theory of intermediate logics that led us to the proof of the present paper. It can (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Indirect Proof and Inversions of Syllogisms.Roy Dyckhoff - 2019 - Bulletin of Symbolic Logic 25 (2):196-207.
    By considering the new notion of the inverses of syllogisms such as Barbara and Celarent, we show how the rule of Indirect Proof, in the form used by Aristotle, may be dispensed with, in a system comprising four basic rules of subalternation or conversion and six basic syllogisms.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • The Implicit Commitment of Arithmetical Theories and Its Semantic Core.Carlo Nicolai & Mario Piazza - 2019 - Erkenntnis 84 (4):913-937.
    According to the implicit commitment thesis, once accepting a mathematical formal system S, one is implicitly committed to additional resources not immediately available in S. Traditionally, this thesis has been understood as entailing that, in accepting S, we are bound to accept reflection principles for S and therefore claims in the language of S that are not derivable in S itself. It has recently become clear, however, that such reading of the implicit commitment thesis cannot be compatible with well-established positions (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Naïve Validity.Julien Murzi & Lorenzo Rossi - forthcoming - Synthese:1-23.
    Beall and Murzi :143–165, 2013) introduce an object-linguistic predicate for naïve validity, governed by intuitive principles that are inconsistent with the classical structural rules. As a consequence, they suggest that revisionary approaches to semantic paradox must be substructural. In response to Beall and Murzi, Field :1–19, 2017) has argued that naïve validity principles do not admit of a coherent reading and that, for this reason, a non-classical solution to the semantic paradoxes need not be substructural. The aim of this paper (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Choosing Your Nonmonotonic Logic: A Shopper’s Guide.Ulf Hlobil - 2018 - In Pavel Arazim & Tomáš Lávička (eds.), The Logica Yearbook 2017. London: College Publications. pp. 109-123.
    The paper presents an exhaustive menu of nonmonotonic logics. The options are individuated in terms of the principles they reject. I locate, e.g., cumulative logics and relevance logics on this menu. I highlight some frequently neglected options, and I argue that these neglected options are particularly attractive for inferentialists.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Strong Normalization via Natural Ordinal.Daniel Durante Pereira Alves - 1999 - Dissertation,
    The main objective of this PhD Thesis is to present a method of obtaining strong normalization via natural ordinal, which is applicable to natural deduction systems and typed lambda calculus. The method includes (a) the definition of a numerical assignment that associates each derivation (or lambda term) to a natural number and (b) the proof that this assignment decreases with reductions of maximal formulas (or redex). Besides, because the numerical assignment used coincide with the length of a specific sequence of (...)
    Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Judgement Aggregation in Non-Classical Logics.Daniele Porello - 2017 - Journal of Applied Non-Classical Logics 27 (1-2):106-139.
    This work contributes to the theory of judgement aggregation by discussing a number of significant non-classical logics. After adapting the standard framework of judgement aggregation to cope with non-classical logics, we discuss in particular results for the case of Intuitionistic Logic, the Lambek calculus, Linear Logic and Relevant Logics. The motivation for studying judgement aggregation in non-classical logics is that they offer a number of modelling choices to represent agents’ reasoning in aggregation problems. By studying judgement aggregation in logics that (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  • Axiomatizing Kripke's Theory of Truth.Volker Halbach & Leon Horsten - 2006 - Journal of Symbolic Logic 71 (2):677 - 712.
    We investigate axiomatizations of Kripke's theory of truth based on the Strong Kleene evaluation scheme for treating sentences lacking a truth value. Feferman's axiomatization KF formulated in classical logic is an indirect approach, because it is not sound with respect to Kripke's semantics in the straightforward sense: only the sentences that can be proved to be true in KF are valid in Kripke's partial models. Reinhardt proposed to focus just on the sentences that can be proved to be true in (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   45 citations  
  • A Cut-Free Sequent Calculus for the Logic Od Subset Spaces.Birgit Elbl - 2016 - In Lev Beklemishev, Stéphane Demri & András Máté (eds.), Advances in Modal Logic, Volume 11. CSLI Publications. pp. 268-287.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Incomplete Symbols — Definite Descriptions Revisited.Norbert Gratzl - 2015 - Journal of Philosophical Logic 44 (5):489-506.
    We investigate incomplete symbols, i.e. definite descriptions with scope-operators. Russell famously introduced definite descriptions by contextual definitions; in this article definite descriptions are introduced by rules in a specific calculus that is very well suited for proof-theoretic investigations. That is to say, the phrase ‘incomplete symbols’ is formally interpreted as to the existence of an elimination procedure. The last section offers semantical tools for interpreting the phrase ‘no meaning in isolation’ in a formal way.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • On Constructing a Logic for the Notion of Complete and Immediate Formal Grounding.Francesca Poggiolesi - 2018 - Synthese 195 (3):1231-1254.
    In Poggiolesi we have introduced a rigorous definition of the notion of complete and immediate formal grounding; in the present paper our aim is to construct a logic for the notion of complete and immediate formal grounding based on that definition. Our logic will have the form of a calculus of natural deduction, will be proved to be sound and complete and will allow us to have fine-grained grounding principles.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • On Formally Measuring and Eliminating Extraneous Notions in Proofs.Andrew Arana - 2009 - Philosophia Mathematica 17 (2):189-207.
    Many mathematicians and philosophers of mathematics believe some proofs contain elements extraneous to what is being proved. In this paper I discuss extraneousness generally, and then consider a specific proposal for measuring extraneousness syntactically. This specific proposal uses Gentzen's cut-elimination theorem. I argue that the proposal fails, and that we should be skeptical about the usefulness of syntactic extraneousness measures.
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Computing Interpolants in Implicational Logics.Makoto Kanazawa - 2006 - Annals of Pure and Applied Logic 142 (1):125-201.
    I present a new syntactical method for proving the Interpolation Theorem for the implicational fragment of intuitionistic logic and its substructural subsystems. This method, like Prawitz’s, works on natural deductions rather than sequent derivations, and, unlike existing methods, always finds a ‘strongest’ interpolant under a certain restricted but reasonable notion of what counts as an ‘interpolant’.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cut Elimination in the Presence of Axioms.Sara Negri & Jan Von Plato - 1998 - Bulletin of Symbolic Logic 4 (4):418-435.
    A way is found to add axioms to sequent calculi that maintains the eliminability of cut, through the representation of axioms as rules of inference of a suitable form. By this method, the structural analysis of proofs is extended from pure logic to free-variable theories, covering all classical theories, and a wide class of constructive theories. All results are proved for systems in which also the rules of weakening and contraction can be eliminated. Applications include a system of predicate logic (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  • A Multimodal Pragmatic Treatment of the Knowability Paradox.Massimiliano Carrara, Daniele Chiffi & Davide Sergio - 2017 - In Gillman Payette & Rafal Urbaniak (eds.), Applications of Formal Philosophy. The Road Less Travelled. Berlin: Springer International Publishing AG. pp. 195-209.
  • The Axiom of Choice and Combinatory Logic.Andrea Cantini - 2003 - Journal of Symbolic Logic 68 (4):1091-1108.
    We combine a variety of constructive methods (including forcing, realizability, asymmetric interpretation), to obtain consistency results concerning combinatory logic with extensionality and (forms of) the axiom of choice.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark  
  • Subformula and Separation Properties in Natural Deduction Via Small Kripke Models: Subformula and Separation Properties.Peter Milne - 2010 - Review of Symbolic Logic 3 (2):175-227.
    Various natural deduction formulations of classical, minimal, intuitionist, and intermediate propositional and first-order logics are presented and investigated with respect to satisfaction of the separation and subformula properties. The technique employed is, for the most part, semantic, based on general versions of the Lindenbaum and Lindenbaum–Henkin constructions. Careful attention is paid to which properties of theories result in the presence of which rules of inference, and to restrictions on the sets of formulas to which the rules may be employed, restrictions (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Natural Deduction Calculi and Sequent Calculi for Counterfactual Logics.Francesca Poggiolesi - 2016 - Studia Logica 104 (5):1003-1036.
    In this paper we present labelled sequent calculi and labelled natural deduction calculi for the counterfactual logics CK + {ID, MP}. As for the sequent calculi we prove, in a semantic manner, that the cut-rule is admissible. As for the natural deduction calculi we prove, in a purely syntactic way, the normalization theorem. Finally, we demonstrate that both calculi are sound and complete with respect to Nute semantics [12] and that the natural deduction calculi can be effectively transformed into the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Logician's Sidelong Glance at Irony.Reinhard Kahle - 2018 - The Baltic International Yearbook of Cognition, Logic and Communication 12 (1).
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Generalisation of Proof Simulation Procedures for Frege Systems by M.L. Bonet and S.R. Buss.Daniil Kozhemiachenko - 2018 - Journal of Applied Non-Classical Logics 28 (4):389-413.
    ABSTRACTIn this paper, we present a generalisation of proof simulation procedures for Frege systems by Bonet and Buss to some logics for which the deduction theorem does not hold. In particular, we study the case of finite-valued Łukasiewicz logics. To this end, we provide proof systems and which augment Avron's Frege system HŁuk with nested and general versions of the disjunction elimination rule, respectively. For these systems, we provide upper bounds on speed-ups w.r.t. both the number of steps in proofs (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • Aristotle, Logic, and QUARC.Jonas Raab - 2018 - History and Philosophy of Logic 39 (4):305-340.
    The goal of this paper is to present a new reconstruction of Aristotle's assertoric logic as he develops it in Prior Analytics, A1-7. This reconstruction will be much closer to Aristotle's original text than other such reconstructions brought forward up to now. To accomplish this, we will not use classical logic, but a novel system developed by Ben-Yami [2014. ‘The quantified argument calculus’, The Review of Symbolic Logic, 7, 120–46] called ‘QUARC’. This system is apt for a more adequate reconstruction (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Back From the Future.Andrea Masini, Luca Viganò & Marco Volpe - 2010 - Journal of Applied Non-Classical Logics 20 (3):241-277.
    Until is a notoriously difficult temporal operator as it is both existential and universal at the same time: A∪B holds at the current time instant w iff either B holds at w or there exists a time instant w' in the future at which B holds and such that A holds in all the time instants between the current one and ẃ. This “ambivalent” nature poses a significant challenge when attempting to give deduction rules for until. In this paper, in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • The Logic of Justification.Sergei Artemov - 2008 - Review of Symbolic Logic 1 (4):477-513.
    We describe a general logical framework, Justification Logic, for reasoning about epistemic justification. Justification Logic is based on classical propositional logic augmented by justification assertions t: F that read t is a justification for F. Justification Logic absorbs basic principles originating from both mainstream epistemology and the mathematical theory of proofs. It contributes to the studies of the well-known Justified True Belief vs. Knowledge problem. We state a general Correspondence Theorem showing that behind each epistemic modal logic, there is a (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   53 citations  
  • Proof Theory for Modal Logic.Sara Negri - 2011 - Philosophy Compass 6 (8):523-538.
    The axiomatic presentation of modal systems and the standard formulations of natural deduction and sequent calculus for modal logic are reviewed, together with the difficulties that emerge with these approaches. Generalizations of standard proof systems are then presented. These include, among others, display calculi, hypersequents, and labelled systems, with the latter surveyed from a closer perspective.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   11 citations