Switch to: References

Add citations

You must login to add citations.
  1. Topological Completeness of Logics Above S4.Guram Bezhanishvili, David Gabelaia & Joel Lucero-Bryan - 2015 - Journal of Symbolic Logic 80 (2):520-566.
  • Johan van Benthem on Logic and Information Dynamics.Alexandru Baltag & Sonja Smets (eds.) - 2014 - Cham, Switzerland: Springer International Publishing.
    This book illustrates the program of Logical-Informational Dynamics. Rational agents exploit the information available in the world in delicate ways, adopt a wide range of epistemic attitudes, and in that process, constantly change the world itself. Logical-Informational Dynamics is about logical systems putting such activities at center stage, focusing on the events by which we acquire information and change attitudes. Its contributions show many current logics of information and change at work, often in multi-agent settings where social behavior is essential, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Topological Approach to Full Belief.Alexandru Baltag, Nick Bezhanishvili, Aybüke Özgün & Sonja Smets - 2019 - Journal of Philosophical Logic 48 (2):205-244.
    Stalnaker, 169–199 2006) introduced a combined epistemic-doxastic logic that can formally express a strong concept of belief, a concept of belief as ‘subjective certainty’. In this paper, we provide a topological semantics for belief, in particular, for Stalnaker’s notion of belief defined as ‘epistemic possibility of knowledge’, in terms of the closure of the interior operator on extremally disconnected spaces. This semantics extends the standard topological interpretation of knowledge with a new topological semantics for belief. We prove that the belief (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • A Computational Learning Semantics for Inductive Empirical Knowledge.Kevin T. Kelly - 2014 - In Alexandru Baltag & Sonja Smets (eds.), Johan van Benthem on Logic and Information Dynamics. Springer International Publishing. pp. 289-337.
    This chapter presents a new semantics for inductive empirical knowledge. The epistemic agent is represented concretely as a learner who processes new inputs through time and who forms new beliefs from those inputs by means of a concrete, computable learning program. The agent’s belief state is represented hyper-intensionally as a set of time-indexed sentences. Knowledge is interpreted as avoidance of error in the limit and as having converged to true belief from the present time onward. Familiar topics are re-examined within (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Hybrid Logics of Separation Axioms.Dmitry Sustretov - 2009 - Journal of Logic, Language and Information 18 (4):541-558.
    We study hybrid logics in topological semantics. We prove that hybrid logics of separation axioms are complete with respect to certain classes of finite topological models. This characterisation allows us to obtain several further results. We prove that aforementioned logics are decidable and PSPACE-complete, the logics of T 1 and T 2 coincide, the logic of T 1 is complete with respect to two concrete structures: the Cantor space and the rational numbers.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • The Topological Product of S4 and S.Philip Kremer - unknown
    Shehtman introduced bimodal logics of the products of Kripke frames, thereby introducing frame products of unimodal logics. Van Benthem, Bezhanishvili, ten Cate and Sarenac generalize this idea to the bimodal logics of the products of topological spaces, thereby introducing topological products of unimodal logics. In particular, they show that the topological product of S4 and S4 is S4 ⊗ S4, i.e., the fusion of S4 and S4: this logic is strictly weaker than the frame product S4 × S4. In this (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On Neighbourhood Product of Some Horn Axiomatizable Logics.Andrey Kudinov - 2018 - Logic Journal of the IGPL 26 (3):316-338.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Topological-Frame Products of Modal Logics.Philip Kremer - 2018 - Studia Logica 106 (6):1097-1122.
    The simplest bimodal combination of unimodal logics \ and \ is their fusion, \, axiomatized by the theorems of \ for \ and of \ for \, and the rules of modus ponens, necessitation for \ and for \, and substitution. Shehtman introduced the frame product \, as the logic of the products of certain Kripke frames: these logics are two-dimensional as well as bimodal. Van Benthem, Bezhanishvili, ten Cate and Sarenac transposed Shehtman’s idea to the topological semantics and introduced (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Tree-like constructions in topology and modal logic.G. Bezhanishvili, N. Bezhanishvili, J. Lucero-Bryan & J. Van Mill - 2021 - Archive for Mathematical Logic 60 (3):265-299.
    Within ZFC, we develop a general technique to topologize trees that provides a uniform approach to topological completeness results in modal logic with respect to zero-dimensional Hausdorff spaces. Embeddings of these spaces into well-known extremally disconnected spaces then gives new completeness results for logics extending S4.2.
    No categories
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Some Results on Modal Axiomatization and Definability for Topological Spaces.Guram Bezhanishvili, Leo Esakia & David Gabelaia - 2005 - Studia Logica 81 (3):325-355.
    We consider two topological interpretations of the modal diamond—as the closure operator (C-semantics) and as the derived set operator (d-semantics). We call the logics arising from these interpretations C-logics and d-logics, respectively. We axiomatize a number of subclasses of the class of nodec spaces with respect to both semantics, and characterize exactly which of these classes are modally definable. It is demonstrated that the d-semantics is more expressive than the C-semantics. In particular, we show that the d-logics of the six (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  • Some Non-Classical Approaches to the Brandenburger–Keisler Paradox.Can Başkent - 2015 - Logic Journal of the IGPL 23 (4):533-552.
  • The Incompleteness of S4 ⊕ S4 for the Product Space R × R.Philip Kremer - unknown
    Shehtman introduced bimodal logics of the products of Kripke frames, thereby introducing frame products of unimodal logics. Van Benthem, Bezhanishvili, ten Cate and Sarenac generalize this idea to the bimodal logics of the products of topological spaces, thereby introducing topological products of unimodal logics. In particular, they show that the topological product of S4 and S4 is S4 ⊕ S4, i.e., the fusion of S4 and S4: this logic is strictly weaker than the frame product S4 × S4. Indeed, van (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A New Proof of the McKinsey–Tarski Theorem.G. Bezhanishvili, N. Bezhanishvili, J. Lucero-Bryan & J. van Mill - 2018 - Studia Logica 106 (6):1291-1311.
    It is a landmark theorem of McKinsey and Tarski that if we interpret modal diamond as closure, then \ is the logic of any dense-in-itself metrizable space. The McKinsey–Tarski Theorem relies heavily on a metric that gives rise to the topology. We give a new and more topological proof of the theorem, utilizing Bing’s Metrization Theorem.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Matching Topological and Frame Products of Modal Logics.Philip Kremer - 2016 - Studia Logica 104 (3):487-502.
    The simplest combination of unimodal logics \ into a bimodal logic is their fusion, \, axiomatized by the theorems of \. Shehtman introduced combinations that are not only bimodal, but two-dimensional: he defined 2-d Cartesian products of 1-d Kripke frames, using these Cartesian products to define the frame product \. Van Benthem, Bezhanishvili, ten Cate and Sarenac generalized Shehtman’s idea and introduced the topological product \, using Cartesian products of topological spaces rather than of Kripke frames. Frame products have been (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Modal Languages for Topology: Expressivity and Definability.Balder ten Cate, David Gabelaia & Dmitry Sustretov - 2009 - Annals of Pure and Applied Logic 159 (1-2):146-170.
    In this paper we study the expressive power and definability for modal languages interpreted on topological spaces. We provide topological analogues of the van Benthem characterization theorem and the Goldblatt–Thomason definability theorem in terms of the well-established first-order topological language.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • The Modal Logic of Continuous Functions on the Rational Numbers.Philip Kremer - 2010 - Archive for Mathematical Logic 49 (4):519-527.
    Let ${{\mathcal L}^{\square\circ}}$ be a propositional language with standard Boolean connectives plus two modalities: an S4-ish topological modality □ and a temporal modality ◦, understood as ‘next’. We extend the topological semantic for S4 to a semantics for the language ${{\mathcal L}^{\square\circ}}$ by interpreting ${{\mathcal L}^{\square\circ}}$ in dynamic topological systems, i.e., ordered pairs 〈X, f〉, where X is a topological space and f is a continuous function on X. Artemov, Davoren and Nerode have axiomatized a logic S4C, and have shown (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Strong Completeness of S4 for Any Dense-in-Itself Metric Space.Philip Kremer - 2013 - Review of Symbolic Logic 6 (3):545-570.
    In the topological semantics for modal logic, S4 is well-known to be complete for the rational line, for the real line, and for Cantor space: these are special cases of S4’s completeness for any dense-in-itself metric space. The construction used to prove completeness can be slightly amended to show that S4 is not only complete, but also strongly complete, for the rational line. But no similarly easy amendment is available for the real line or for Cantor space and the question (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • Quantified Modal Logic on the Rational Line.Philip Kremer - 2014 - Review of Symbolic Logic 7 (3):439-454.
  • Topology and Measure in Logics for Region-Based Theories of Space.Tamar Lando - 2018 - Annals of Pure and Applied Logic 169 (4):277-311.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Modal Logic of {Beta(Mathbb{N})}.Guram Bezhanishvili & John Harding - 2009 - Archive for Mathematical Logic 48 (3-4):231-242.
    Let ${\beta(\mathbb{N})}$ denote the Stone–Čech compactification of the set ${\mathbb{N}}$ of natural numbers (with the discrete topology), and let ${\mathbb{N}^\ast}$ denote the remainder ${\beta(\mathbb{N})-\mathbb{N}}$ . We show that, interpreting modal diamond as the closure in a topological space, the modal logic of ${\mathbb{N}^\ast}$ is S4 and that the modal logic of ${\beta(\mathbb{N})}$ is S4.1.2.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations