Switch to: References

Add citations

You must login to add citations.
  1. Choosing a Definition of Entropy that Works.Robert H. Swendsen - 2012 - Foundations of Physics 42 (4):582-593.
    Disagreements over the meaning of the thermodynamic entropy and how it should be defined in statistical mechanics have endured for well over a century. In an earlier paper, I showed that there were at least nine essential properties of entropy that are still under dispute among experts. In this paper, I examine the consequences of differing definitions of the thermodynamic entropy of macroscopic systems.Two proposed definitions of entropy in classical statistical mechanics are (1) defining entropy on the basis of probability (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Clausius versus Sackur–Tetrode entropies.Thomas Oikonomou & G. Baris Bagci - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (2):63-68.
    Based on the property of extensivity , we derive in a mathematically consistent manner the explicit expressions of the chemical potential μμ and the Clausius entropy S for the case of monoatomic ideal gases in open systems within phenomenological thermodynamics. Neither information theoretic nor quantum mechanical statistical concepts are invoked in this derivation. Considering a specific expression of the constant term of S, the derived entropy coincides with the Sackur–Tetrode entropy in the thermodynamic limit. We demonstrate, however, that the former (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Clausius versus Sackur-Tetrode entropies.Thomas Oikonomou & Gokhan B. Bagci - unknown
    Based on the property of extensivity, we derive in a mathematically consistent manner the explicit expressions of the chemical potential and the Clausius entropy $S$ for the case of monoatomic ideal gases in open systems within phenomenological thermodynamics. Neither information theoretic nor quantum mechanical statistical concepts are invoked in this derivation. Considering a specific expression of the constant term of $S$, the derived entropy coincides with the Sackur-Tetrode entropy in the thermodynamic limit. We demonstrate however, that the former limit is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Physics of uncertainty, the Gibbs paradox and indistinguishable particles.Demetris Koutsoyiannis - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (4):480-489.
    The idea that, in the microscopic world, particles are indistinguishable, interchangeable and without identity has been central in quantum physics. The same idea has been enrolled in statistical thermodynamics even in a classical framework of analysis to make theoretical results agree with experience. In thermodynamics of gases, this hypothesis is associated with several problems, logical and technical. For this case, an alternative theoretical framework is provided, replacing the indistinguishability hypothesis with standard probability and statistics. In this framework, entropy is a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • The Logic of Identity: Distinguishability and Indistinguishability in Classical and Quantum Physics.Dennis Dieks - 2014 - Foundations of Physics 44 (12):1302-1316.
    The suggestion that particles of the same kind may be indistinguishable in a fundamental sense, even so that challenges to traditional notions of individuality and identity may arise, has first come up in the context of classical statistical mechanics. In particular, the Gibbs paradox has sometimes been interpreted as a sign of the untenability of the classical concept of a particle and as a premonition that quantum theory is needed. This idea of a ‘quantum connection’ stubbornly persists in the literature, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • The peculiar status of the second law of thermodynamics and the quest for its violation.Germano D'Abramo - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (4):226-235.
    Even though the second law of thermodynamics holds the supreme position among the laws of nature, as stated by many distinguished scientists, notably Eddington and Einstein, its position appears to be also quite peculiar. Given the atomic nature of matter, whose behavior is well described by statistical physics, the second law could not hold unconditionally, but only statistically. It is not an absolute law. As a result of this, in the present paper we try to argue that we have not (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Three Philosophical Approaches to Entomology.Jean-Marc Drouin - 2013 - In Hanne Andersen, Dennis Dieks, Wenceslao González, Thomas Uebel & Gregory Wheeler (eds.), New Challenges to Philosophy of Science. Springer Verlag. pp. 377--386.
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Is There a Unique Physical Entropy? Micro versus Macro.Dennis Dieks - 2012 - In Hanne Andersen, Dennis Dieks, Wenceslao González, Thomas Uebel & Gregory Wheeler (eds.), New Challenges to Philosophy of Science. Springer Verlag. pp. 23--34.
    Entropy in thermodynamics is an extensive quantity, whereas standard methods in statistical mechanics give rise to a non-extensive expression for the entropy. This discrepancy is often seen as a sign that basic formulas of statistical mechanics should be revised, either on the basis of quantum mechanics or on the basis of general and fundamental considerations about the distinguishability of particles. In this article we argue against this response. We show that both the extensive thermodynamic and the non-extensive statistical entropy are (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark